Single-Particle Tracking with Scanning Non-Linear Microscopy.

Nanomaterials (Basel)

MOLTECH-Anjou Laboratory, UMR CNRS 6200, University of Angers, 2 bd Lavoisier, 49045 Angers CEDEX, France.

Published: August 2020

This study describes the adaptation of non-linear microscopy for single-particle tracking (SPT), a method commonly used in biology with single-photon fluorescence. Imaging moving objects with non-linear microscopy raises difficulties due to the scanning process of the acquisitions. The interest of the study is based on the balance between all the experimental parameters (objective, resolution, frame rate) which need to be optimized to record long trajectories with the best accuracy and frame rate. To evaluate the performance of the setup for SPT, several basic estimation methods are used and adapted to the new detection process. The covariance-based estimator (CVE) seems to be the best way to evaluate the diffusion coefficient from trajectories using the specific factors of motion blur and localization error.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7466504PMC
http://dx.doi.org/10.3390/nano10081519DOI Listing

Publication Analysis

Top Keywords

non-linear microscopy
12
single-particle tracking
8
frame rate
8
tracking scanning
4
scanning non-linear
4
microscopy study
4
study describes
4
describes adaptation
4
adaptation non-linear
4
microscopy single-particle
4

Similar Publications

Additively manufactured drug products, typically produced using small-scale, on-demand batch mode, require rapid and non-destructive quantification methods. A tunable modular design (TMD) approach combining porous polymeric freeze-dried modules and an additive manufacturing method, inkjet printing, was proposed in an earlier study to fabricate accurate and patient-tailored doses of an antidepressant citalopram hydrobromide. This approach addresses the unmet medical needs associated with antidepressant tapering.

View Article and Find Full Text PDF

Understanding the deterioration processes in wooden artefacts is essential for accurately assessing their conservation status and developing effective preservation strategies. Advanced imaging techniques are currently being explored to study the impact of chemical changes on the structural and mechanical properties of wood. Nonlinear optical modalities, including second harmonic generation (SHG) and two-photon excited fluorescence (TPEF), combined with fluorescence lifetime imaging microscopy (FLIM), offer a promising non-destructive diagnostic method for evaluating lignocellulose-based materials.

View Article and Find Full Text PDF

Analysis of printing temperature effect on texture modification: Potential of soy protein isolate-based bigel for swallowing-friendly food.

Int J Biol Macromol

January 2025

Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-products Processing, Ministry of Agriculture and Rural Affairs, Beijing 100193, China; Institute of Western Agriculture, Chinese Academy of Agricultural Sciences, Changji 831100, China. Electronic address:

This work prepared the soy protein isolate (SPI)-beeswax-based bigel loaded with β-carotene, and the effect of printing temperature (PT) on texture regulation was investigated. During printing, increasing PT weakened the rheological properties and printability of ink. However, the mechanical strength and deformation resistance at non-linear regions of products were strengthened after printing.

View Article and Find Full Text PDF

Transcription activators trigger transcript production by RNA Polymerase II (RNApII) via the Mediator coactivator complex. Here the dynamics of activator, Mediator, and RNApII binding at promoter DNA were analyzed using multi-wavelength single-molecule microscopy of fluorescently labeled proteins in budding yeast nuclear extract. Binding of Mediator and RNApII to the template required activator and an upstream activator sequence (UAS), but not a core promoter.

View Article and Find Full Text PDF

Significance: Extending the photoacoustic microscopy (PAM) into the mid-infrared (MIR) molecular fingerprint region constitutes a promising route toward label-free imaging of biological molecular structures. Realizing this objective requires a high-energy nanosecond MIR laser source. However, existing MIR laser technologies are limited to either low pulse energy or free-space structure that is sensitive to environmental conditions.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!