A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Machine Learning for Seed Quality Classification: An Advanced Approach Using Merger Data from FT-NIR Spectroscopy and X-ray Imaging. | LitMetric

Optical sensors combined with machine learning algorithms have led to significant advances in seed science. These advances have facilitated the development of robust approaches, providing decision-making support in the seed industry related to the marketing of seed lots. In this study, a novel approach for seed quality classification is presented. We developed classifier models using Fourier transform near-infrared (FT-NIR) spectroscopy and X-ray imaging techniques to predict seed germination and vigor. A forage grass () was used as a model species. FT-NIR spectroscopy data and radiographic images were obtained from individual seeds, and the models were created based on the following algorithms: linear discriminant analysis (LDA), partial least squares discriminant analysis (PLS-DA), random forest (RF), naive Bayes (NB), and support vector machine with radial basis (SVM-) kernel. In the germination prediction, the models individually reached an accuracy of 82% using FT-NIR data, and 90% using X-ray data. For seed vigor, the models achieved 61% and 68% accuracy using FT-NIR and X-ray data, respectively. Combining the FT-NIR and X-ray data, the performance of the classification model reached an accuracy of 85% to predict germination, and 62% for seed vigor. Overall, the models developed using both NIR spectra and X-ray imaging data in machine learning algorithms are efficient in quickly, non-destructively, and accurately identifying the capacity of seed to germinate. The use of X-ray data and the LDA algorithm showed great potential to be used as a viable alternative to assist in the quality classification of seeds.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7435829PMC
http://dx.doi.org/10.3390/s20154319DOI Listing

Publication Analysis

Top Keywords

x-ray data
16
machine learning
12
quality classification
12
ft-nir spectroscopy
12
x-ray imaging
12
seed
9
seed quality
8
data
8
spectroscopy x-ray
8
learning algorithms
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!