Global infections with colistin-resistant (CoR-PA) are increasing; there are currently very few studies focused on the antimicrobial susceptibility of CoR-PA isolates, and none from Thailand. Here, we investigated the impact of various antimicrobials, alone and in combination, via the in vitro testing of CoR-PA clinical isolates. Eighteen CoR-PA isolates were obtained from patients treated at Phramongkutklao Hospital from January 2010 through June 2019; these were classified into six different clonal types by using the enterobacterial repetitive intergenic consensus (ERIC)-PCR method, with a high prevalence of Group A (27.8%). The antimicrobial susceptibility was determined as the minimal inhibitory concentrations (MICs) using the epsilometer-test (E-test) method. The synergistic activities of six antimicrobial combinations were reported via the fractional-inhibitory-concentration index. All CoR-PA isolates were susceptible to amikacin, meropenem, and ceftolozane/tazobactam, but only 5.56% were susceptible to imipenem. In vitro synergistic activities were detected for amikacin with aztreonam, piperacillin/tazobactam, meropenem, and ceftazidime for 16.67%, 11.11%, 11.11%, and 5.55%, respectively. One CoR-PA isolate carried the metallo-β-lactamase gene; none carried genes or detected plasmid-mediated AmpC β-lactamase or an overproduction of chromosomal AmpC β-lactamase. Seven CoR-PA isolates (38.89%) were capable of biofilm formation. In conclusion, CoR-PA isolates are highly susceptible to antimicrobials; the synergy observed in response to the various agents should be examined in a clinical setting.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7459651 | PMC |
http://dx.doi.org/10.3390/antibiotics9080475 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!