A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Proton dynamics in superprotonic RbH(SeO)crystal by broadband dielectric spectroscopy. | LitMetric

Broadband dielectric and AC conductivity spectra (1 Hz to 1 THz) of the superprotonic single crystal RbH(SeO)(RHSe) along theaxis were studied in a wide temperature range 10 K << 475 K that covers the ferroelastic (< 453 K) and superprotonic (> 453 K) phases. A contribution of the interfacial electrode polarization layers was separated from the bulk electrical properties and the bulk DC conductivity was evaluated above room temperature. The phase transition to the superprotonic phase was shown to be connected with the steep but almost continuous increase in bulk DC conductivity, and with giant permittivity effects due to the enhanced bulk proton hopping and interfacial electrode polarization layers. The AC conductivity scaling analysis confirms validity of the first universality above room temperature. At low temperatures, although the conductivity was low, the frequency dependence of dielectric loss indicates no clear evidence of the nearly constant loss effect, so-called second universality. The bulk (intrinsic) dielectric properties, AC and DC conductivity of the RHSe crystal at frequencies up to 1 GHz are shown to be caused by the thermally activated proton hopping. The increase of the AC conductivity above 100 GHz could be assigned to the low-frequency wing of proton vibrational modes.

Download full-text PDF

Source
http://dx.doi.org/10.1088/1361-648X/abac8cDOI Listing

Publication Analysis

Top Keywords

broadband dielectric
8
interfacial electrode
8
electrode polarization
8
polarization layers
8
bulk conductivity
8
room temperature
8
proton hopping
8
conductivity
7
bulk
5
proton
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!