In China, the corresponding control directives for volatile organic compounds (VOCs) have been based on primary emissions, rarely considering reactive speciation. To seek more effective VOCs control strategies, we investigated 107 VOC species in a typical coastal city (Beihai) of South China, from August to November 2018. Meanwhile, a high-resolution anthropogenic VOCs monthly emission inventory (EI) was established for 2018. For source apportionments (SAs) reliability, comparisons of source structures derived from positive matrix factorization (PMF) and EI were made mainly in terms of reaction losses, uncertainties and specific ratios. Finally, for the source-end control, a comprehensive reactivity control index (RCI) was established by combing SAs with reactive speciation profiles. Ambient measurements showed that the average concentration of VOCs was 26.38 ppbv, dominated by alkanes (36.7%) and oxygenated volatile organic compounds (OVOCs) (29.4%). VOC reactivity was estimated using ozone formation potential (52.35 ppbv) and propylene-equivalent concentration (4.22 ppbv). EI results displayed that the entire VOC, OFP, and propylene-equivalent emissions were 40.98 Gg, 67.98 Gg, and 105.93 Gg, respectively. Comparisons of source structures indicated that VOC SAs agreed within ±100% between two perspectives. Both PMF and EI results showed that petrochemical industry (24.0% and 33.0%), food processing and associated combustion (19.1% and 29.2%) were the significant contributors of anthropogenic VOCs, followed by other industrial processes (22.2% and 13.3%), transportation (18.9% and 12.0%), and solvent utilization (9.1% and10.5%). Aimed at VOCs abatement according to RCI: for terminal control, fifteen ambient highly reactive species (predominantly alkenes and alkanes) were targeted; for source control, the predominant anthropogenic sources (food industry, solvent usage, petrochemical industry and transportation) and their emitted highly reactive species were determined. Particularly, with low levels of ambient VOC and primary emissions, in this VOC and NOx double-controlled regime, crude disorganized emission from food industry contributed a high RCI.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7354770PMC
http://dx.doi.org/10.1016/j.scitotenv.2020.140825DOI Listing

Publication Analysis

Top Keywords

vocs control
8
control strategies
8
typical coastal
8
coastal city
8
south china
8
emission inventory
8
volatile organic
8
organic compounds
8
primary emissions
8
reactive speciation
8

Similar Publications

The real-time detection of gaseous HO and its typical isotopic molecules, e.g., HO, DO, HDO, and HTO, is highly desirable in many fundamental scientific studies and practical monitoring, such as mechanistic studies of HO-involved chemical reactions and radiation risk warning of abnormal HTO emissions.

View Article and Find Full Text PDF

COVID-19 outbreaks caused by different SARS-CoV-2 variants: a descriptive, comparative study from China.

Front Public Health

December 2024

National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, NHC Key Laboratory of Medical Virology and Viral Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases (Zhejiang University), National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China.

Objectives: To understand the epidemic characteristics of various SARS-CoV-2 variants, we mainly focus on analyzing general epidemic profiles, viral mutation, and evolution of COVID-19 outbreaks caused by different SARS-CoV-2 variants of concern (VOCs) in China as of August 2022.

Methods: We systematically sorted out the general epidemic profiles of outbreaks caused by various SARS-CoV-2 VOCs in China, compared the differences of outbreaks caused by Delta and Omicron VOCs, and analyzed the mutational changes of subvariants between the same outbreak and different outbreaks.

Findings: By 15 August 2022, a total of 2, 33, and 124 COVID-19 outbreaks caused by Alpha, Delta, and Omicron VOCs, respectively, were reported in different regions of China.

View Article and Find Full Text PDF

The risk of infertility is progressively escalating over the years, and it has been established that exposure to environmental pollutants is closely linked to infertility. As a prevalent environmental pollutant in daily life, there is still a lack of substantial evidence on the association between volatile organic compounds (VOCs) exposure and infertility risk. This study aimed to examine the association between VOCs exposure and the risk of female infertility in the United States.

View Article and Find Full Text PDF

Macroalgae Compound Characterizations and Their Effect on the Ruminal Microbiome in Supplemented Lambs.

Vet Sci

December 2024

Facultad de Agronomía y Veterinaria, Centro de Biociencias, Instituto de Investigaciones en Zonas Desérticas, Universidad Autónoma de San Luis Potosí, San Luis Potosí 78321, Mexico.

The impact of macroalgae species on rumen function remains largely unexplored. This present study aimed to identify the biocompounds of the three types of marine macroalgae described: (Brown), spp. (Lettuce), spp.

View Article and Find Full Text PDF

The Impact of Public Health and Social Measures (PHSMs) on SARS-CoV-2 Transmission in the WHO European Region (2020-2022).

Influenza Other Respir Viruses

December 2024

Department of Infectious Disease Epidemiology, Faculty of Epidemiology and Population Health, London School of Hygiene and Tropical Medicine, London, UK.

Background: Between 2020 and 2022, countries used a range of different public health and social measures (PHSMs) to reduce the transmission of SARS-CoV-2. The impact of these PHSMs varied as the pandemic progressed, variants of concern (VOCs) emerged, vaccines rolled out and acceptance/uptake rates evolved. In this study, we assessed the impact of PHSMs in the World Health Organization (WHO) European Region during VOC phases.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!