Objective: Relapsed and refractory CD19-positive B-cell acute lymphoblastic leukemia (ALL) and non-Hodgkin lymphoma (NHL) are the focus of studies on hematological cancers. Treatment of these malignancies has undergone recent transformation with the development of new gene therapy and molecular biology techniques, which are safer and well-tolerated therapeutic approaches. The CD19 antigen is the most studied therapeutic target in these hematological cancers. This study reports the results of clinical-grade production, quality control, and in vivo efficacy processes of ISIKOK-19 cells as the first academic clinical trial of CAR-T cells targeting CD19-expressing B cells in relapsed/refractory ALL and NHL patients in Turkey.
Materials And Methods: We used a lentiviral vector encoding the CD19 antigen-specific antibody head (FMC63) conjugated with the CD8-CD28-CD3ζ sequence as a chimeric antigen receptor (CAR) along with a truncated form of EGFR (EGFRt) on human T-lymphocytes (CAR-T). We preclinically assessed the efficacy and safety of the manufactured CAR-T cells, namely ISIKOK-19, from both healthy donors’ and ALL/NHL patients’ peripheral blood mononuclear cells.
Results: We showed significant enhancement of CAR lentivirus transduction efficacy in T-cells using BX-795, an inhibitor of the signaling molecule TBK1/IKKƐ, in order to cut the cost of CAR-T cell production. In addition, ISIKOK-19 cells demonstrated a significantly high level of cytotoxicity specifically against a CD19+ B-lymphocyte cancer model, RAJI cells, in NOD/SCID mice.
Conclusion: This is the first report of preclinical assessment of efficacy and safety analysis of CAR-T cells (ISIKOK-19) targeting CD19-expressing B cells in relapsed/refractory ALL and NHL patients in Turkey.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7702660 | PMC |
http://dx.doi.org/10.4274/tjh.galenos.2020.2020.0070 | DOI Listing |
Int Immunol
January 2025
Department of Oncology, Nagasaki University Graduate School of Biomedical Sciences, 1-12-4, Sakamoto, Nagasaki, 852-8523, Japan.
Since the first approval of an immune-checkpoint inhibitor, we have witnessed the clinical success of cancer immunotherapy. Adoptive T-cell therapy with chimeric antigen-receptor T (CAR-T) cells has shown remarkable efficacy in hematological malignancies. Concurrently with these successes, the cancer immunoediting concept that refined the cancer immunosurveillance concept underpinned the scientific mechanism and reason for past failures, as well as recent breakthroughs in cancer immunotherapy.
View Article and Find Full Text PDFACS Appl Bio Mater
January 2025
Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Hyderabad 500037, India.
Immunotherapy is a cutting-edge approach that leverages sophisticated technology to target tumor-specific antibodies and modulate the immune system to eradicate cancer and enhance patients' quality of life. Bioinformatics and genetic science advancements have made it possible to diagnose and treat cancer patients using immunotherapy technology. However, current immunotherapies against cancer have limited clinical benefits due to cancer-associated antigens, which often fail to interact with immune cells and exhibit insufficient therapeutic targeting with unintended side effects.
View Article and Find Full Text PDFCells
January 2025
Hematology, St. Eugenio Hospital, ASL Roma2, 00144 Rome, Italy.
Despite the advances of CAR-T cells in certain hematological malignancies, mostly from B-cell derivations such as non-Hodgkin lymphomas, acute lymphoblastic leukemia and multiple myeloma, a significant portion of other hematological and non-hematological pathologies can benefit from this innovative treatment, as the results of clinical studies are demonstrating. The clinical application of CAR-T in the setting of acute T-lymphoid leukemia, acute myeloid leukemia, solid tumors, autoimmune diseases and infections has encountered limitations that are different from those of hematological B-cell diseases. To overcome these restrictions, strategies based on different molecular engineering platforms have been devised and will be illustrated below.
View Article and Find Full Text PDFCells
January 2025
DIMEAS, Politecnico di Torino, C.so Duca degli Abruzzi 24, 10129 Torino, Italy.
Haematological malignancies comprise a diverse group of life-threatening systemic diseases, including leukaemia, lymphoma, and multiple myeloma. Currently available therapies, including chemotherapy, immunotherapy, and CAR-T cells, are often associated with important side effects and with the development of drug resistance and, consequently, disease relapse. In the last decades, it was largely demonstrated that the tumor microenvironment significantly affects cancer cell proliferation and tumor response to treatment.
View Article and Find Full Text PDFLeuk Lymphoma
January 2025
Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
Using immunotherapeutic agents like inotuzumab ozogamicin (InO), blinatumomab, or chimeric antigen receptor T (CAR T)-cell therapy in frontline adult B-cell acute lymphoblastic leukemia (B-ALL) therapy is promising. These agents are mostly well tolerated and have different toxicity profiles than conventional chemotherapy, enabling their combination with chemotherapy. Additionally, they have often been shown to overcome the traditional adverse ALL risk features.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!