Mimics of natural antimicrobial peptides are promising compounds to fight the rising threat of multi-drug resistant bacteria. Here we report the design, synthesis and conformational analysis of a new class of antimicrobial peptide mimetics incorporating a diphenylacetylene scaffold. Within a small set of compounds, we observe a correlation between amphiphilicity, the efficiency of partitioning into negatively charged membranes and antibacterial activity. The most amphiphilic compound, which contains four isoleucine residues and four lysine residues, displays species-selective antibacterial activity (most active against Bacillus subtills) and low haemolytic activity. Solution-phase conformational analysis of this compound indicates that a defined structure is adopted in the presence of negatively charged phospholipid membranes and aqueous 2,2,2-trifluoroethanol but not in water. A conformation model indicates that the cationic and hydrophobic functional groups are segregated. These results may inform the development of highly selective antimicrobial peptide mimetics for therapeutic applications.

Download full-text PDF

Source
http://dx.doi.org/10.1002/cmdc.202000474DOI Listing

Publication Analysis

Top Keywords

antimicrobial peptide
12
peptide mimetics
12
conformational analysis
12
diphenylacetylene scaffold
8
synthesis conformational
8
negatively charged
8
antibacterial activity
8
antimicrobial
4
mimetics based
4
based diphenylacetylene
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!