Bereavement is associated with many negative behavioural, psychological and physiological consequences and leads to an increased risk of mortality and morbidity. However, studies specifically examining neuroendocrine mechanisms of grief and bereavement have yet to be reviewed. This systematic review is a synthesis of the latest evidence in this field and aims to draw conclusions about the implications of neurobiological findings on the development of new interventions. PRISMA guidelines for systematic reviews were used to search for articles assessing neuroendocrine correlates of grief. Findings were qualitatively summarised. The National Heart, Lung, and Blood Institute Study Assessment Tool was used to assess the quality of the included studies. Out of 460 papers, 20 met the inclusion criteria. However, most were of fair quality only. As a neuroendocrine marker, the majority of the studies reported cortisol as the outcome measure and found elevated mean cortisol levels, flattened diurnal cortisol slopes and higher morning cortisol in bereaved subjects. Cortisol alterations were moderated by individual differences such as emotional reaction to grief, depressive symptoms, grief severity, closeness to the deceased and age or gender. Research on neuroendocrine mechanisms of grief is still in its early stages regarding grief measures and the use and timing of neuroendocrine assessments. Most of the studies focus on cortisol as outcome, and only limited data exist on other biomarkers such as oxytocin. Future research might consider assessing a broader range of neuroendocrine markers and use longitudinal designs with a focus on the psychobiological reactions to loss. Based on this, individually tailored psychosocial interventions, possibly in the palliative care context, might be developed to prevent prolonged grief disorder.

Download full-text PDF

Source
http://dx.doi.org/10.1111/jne.12887DOI Listing

Publication Analysis

Top Keywords

neuroendocrine mechanisms
12
mechanisms grief
12
grief
8
grief bereavement
8
systematic review
8
cortisol outcome
8
neuroendocrine
7
cortisol
6
bereavement systematic
4
review implications
4

Similar Publications

Background: Lowering barometric pressure (LP) can exacerbate neuropathic pain. However, animal studies in this field are limited to a few conditions. Furthermore, although sympathetic involvement has been reported as a possible mechanism, whether the sympathetic nervous system is involved in the hypothalamic-pituitary-adrenal (HPA) axis remains unknown.

View Article and Find Full Text PDF

Objectives: Prostate cancer (PCa) is a leading cause of cancer death in men worldwide. Approximately 30% of castrate-resistant PCa becomes refractory to therapy due to neuroendocrine differentiation (NED) that is present in <1% of de-novo tumors. First-in-class imipridone ONC201/TIC10 therapy has shown clinical activity against midline gliomas, neuroendocrine tumors, and PCa.

View Article and Find Full Text PDF

The Renin-Angiotensin System (RAS) is a complex neuroendocrine system consisting of a single precursor protein, angiotensinogen (AGT), which is processed into various peptide hormones, including the angiotensins [Ang I, Ang II, Ang III, Ang IV, Ang-(1-9), Ang-(1-7), Ang-(1-5), etc] and Alamandine-related peptides [Ang A, Alamandine, Ala-(1-5)], through intricate enzymatic pathways. Functionally, the RAS is divided into two axes with opposing effects: the classical axis, primarily consisting of Ang II acting through the AT receptor (ATR), and in contrast the protective axis, which includes the receptors Mas, ATR and MrgD and their respective ligands. A key area of RAS research is to gain a better understanding how signaling cascades elicited by these receptors lead to either "classical" or "protective" effects, as imbalances between the two axes can contribute to disease.

View Article and Find Full Text PDF

Remodeling the Epigenome Through Meditation: Effects on Brain, Body, and Well-being.

Subcell Biochem

January 2025

Department of Biology and Biotechnologies C. Darwin, Sapienza University of Rome, Rome, Italy.

Epigenetic mechanisms are key processes that constantly reshape genome activity carrying out physiological responses to environmental stimuli. Such mechanisms regulate gene activity without modifying the DNA sequence, providing real-time adaptation to changing environmental conditions. Both favorable and unfavorable lifestyles have been shown to influence body and brain by means of epigenetics, leaving marks on the genome that can either be rapidly reversed or persist in time and even be transmitted trans-generationally.

View Article and Find Full Text PDF

Prostate cancer is a multifactorial disease influenced by various molecular features. Over the past decades, epigenetics, which is the study of changes in gene expression without altering the DNA sequence, has been recognized as a major driver of this disease. In the past 50 years, advancements in technological tools to characterize the epigenome have highlighted crucial roles of epigenetic mechanisms throughout the entire spectrum of prostate cancer, from initiation to progression, including localized disease, metastatic dissemination, castration resistance and neuroendocrine transdifferentiation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!