Cyanidin improves oocyte maturation and the in vitro production of pig embryos.

In Vitro Cell Dev Biol Anim

Department of Animal and Pre-veterinary Studies, University of Findlay, 1000 North Main Street, Findlay, OH, 45840, USA.

Published: August 2020

The objective of this study was to reduce the negative effects of oxidative stress by decreasing the levels of reactive oxygen species (ROS) through supplementation of the major antioxidants present in elderberries: kuromanin and cyanidin. Oocytes (n = 1150) were supplemented with 100 or 200 μM of kuromanin or cyanidin during maturation, and then evaluated for ROS levels or fertilized and evaluated for penetration, polyspermic penetration, male pronucleus formation, and embryonic development. The ROS levels and incidence of polyspermic penetration were lower (P < 0.05) in oocytes supplemented with 100 μM cyanidin when compared with other treatments. Supplementation of 100 μM cyanidin increased (P < 0.05) MPN and blastocyst formation compared with other treatments. However, supplementation of 100 μM kuromanin did not have significant effects on the criteria evaluated, and supplementation of 200 μM kuromanin had significant (P < 0.05) detrimental effects for each criterion. Additional oocytes (n = 1438) were supplemented with 100 μM cyanidin during maturation and evaluated for glutathione, glutathione peroxidase, catalase, and superoxide dismutase activity. Supplementation of 100 μM cyanidin increased (P < 0.05) catalase activity and intracellular GSH levels compared with no supplementation of cyanidin. These results indicate that supplementing cyanidin during maturation reduces oxidative stress by reducing ROS levels and increasing GSH concentrations within the oocyte.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s11626-020-00485-yDOI Listing

Publication Analysis

Top Keywords

kuromanin cyanidin
8
ros levels
8
polyspermic penetration
8
cyanidin improves
4
improves oocyte
4
oocyte maturation
4
maturation vitro
4
vitro production
4
production pig
4
pig embryos
4

Similar Publications

Transcriptomic and metabolomic analyses reveal molecular and metabolic regulation of anthocyanin biosynthesis in three varieties of currant.

Food Res Int

November 2024

Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture and Rural Affairs, College of Horticulture & Landscape Architecture, Northeast Agricultural University, Harbin 150030, China; National-Local Joint Engineering Research Center for Development and Utilization of Small Fruits in Cold Regions, Northeast Agricultural University, Harbin 150030, China. Electronic address:

Article Synopsis
  • * A study on white, red, and black currants utilized transcriptomics and metabolomics to identify key anthocyanins that determine the fruits' red and purple colors.
  • * The research found specific genes and transcription factors that regulate anthocyanin production, enhancing color development in currants during their growth stages.
View Article and Find Full Text PDF

The color of a fruit is an important contributor to the perception of its nutritional value. It is widely acknowledged that the color of sweet cherry changes obviously during ripening. Variations in anthocyanins and flavonoids account for the heterogeneous color of sweet cherries.

View Article and Find Full Text PDF

Background: There is evidence that low doses or physiological concentrations of certain natural polyphenols enhance the activity of telomerase. However, the precise mechanism by which natural polyphenols regulate telomerase activity remains unclear. Recent research indicates that NF-E2 related factor 2 (Nrf2) and silent information regulator 1 (SIRT1) are involved in human telomerase reverse transcriptase (hTERT) regulation.

View Article and Find Full Text PDF

As the most visualized evaluation indicator of the commercial quality, the color of Zanthoxylum bungeanum peels is an important external economic characteristic and largely impacts the purchase behavior of consumers. To explore the potential coloration mechanism, the popular cultivars of Z. bungeanum (Fengxian Dahongpao, FXDHP) were selected to investigate its pigment composition and intracellular metabolic characteristics.

View Article and Find Full Text PDF

Multi-Omics and miRNA Interaction Joint Analysis Highlight New Insights Into Anthocyanin Biosynthesis in Peanuts ( L.).

Front Plant Sci

February 2022

State Key Laboratory of North China Crop Improvement and Regulation, North China Key Laboratory for Crop Germplasm Resources of Education Ministry, Laboratory of Hebei Provincial Crop Germplasm Resources, Hebei Agricultural University, Baoding, China.

Peanut ( L.) is one of the most important economic and oil crops in the world. At present, peanut varieties with rich anthocyanin in testa are rare in the market, but the selection and breeding of varieties with the related traits has always attracted the attention of breeders.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!