HIPRO: A High-Efficiency, Hypoxia-Induced Protocol for Generation of Photoreceptors in Retinal Organoids from Mouse Pluripotent Stem Cells.

STAR Protoc

Neurobiology, Neurodegeneration & Repair Laboratory, National Eye Institute, National Institutes of Health, Bethesda, MD 20892-0610, USA.

Published: June 2020

Mouse pluripotent stem cells can be efficiently differentiated into retinal organoids with polarized, laminated neural retina harboring all retinal cell types by the Hypoxia-Induced Generation of Photoreceptor in Retinal Organoids (HIPRO) protocol. In our recent publication, we modified the HIPRO protocol on the basis of comparative transcriptome analyses to facilitate photoreceptor biogenesis and maturation. Here, we provide a detailed protocol for efficient generation of retinal organoids from mouse pluripotent stem cells. For complete details on the use and execution of this protocol, please refer to (Chen et al., 2016, DiStefano et al., 2018, Brooks et al., 2019).

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7402619PMC
http://dx.doi.org/10.1016/j.xpro.2020.100018DOI Listing

Publication Analysis

Top Keywords

retinal organoids
16
mouse pluripotent
12
pluripotent stem
12
stem cells
12
organoids mouse
8
hipro protocol
8
protocol
5
retinal
5
hipro high-efficiency
4
high-efficiency hypoxia-induced
4

Similar Publications

Viral vector delivery of gene therapy represents a promising approach for the treatment of numerous retinal diseases. Adeno-associated viral vectors (AAV) constitute the primary gene delivery platform; however, their limited cargo capacity restricts the delivery of several clinically relevant retinal genes. In this study, we explore the feasibility of employing high-capacity adenoviral vectors (HC-AdVs) as alternative delivery vehicles, which, with a capacity of up to 36 kb, can potentially accommodate all known retinal gene coding sequences.

View Article and Find Full Text PDF

Human induced pluripotent stem cell (hiPSC)-based disease modeling can be successfully recapitulated to mimic disease characteristics across various human pathologies. Glaucoma, a progressive optic neuropathy, primarily affects the retinal ganglion cells (RGCs). While multiple groups have successfully generated RGCs from non-diseased hiPSCs, producing RGCs from glaucomatous human samples holds significant promise for understanding disease pathology by revealing patient-specific disease signatures.

View Article and Find Full Text PDF

Stargardt disease is a currently untreatable, inherited neurodegenerative disease that leads to macular degeneration and blindness due to loss-of-function mutations in the ABCA4 gene. We have designed a dual adeno-associated viral vector encoding a split-intein adenine base editor to correct the most common mutation in ABCA4 (c.5882G>A, p.

View Article and Find Full Text PDF

Stargardt disease (STGD1) is an autosomal recessive disorder caused by pathogenic variants in that affects the retina and is characterised by progressive central vision loss. The onset of disease manifestations varies from childhood to early adulthood. Whole exome (WES), whole gene, and whole genome sequencing (WGS) were performed for a patient with STGD1.

View Article and Find Full Text PDF
Article Synopsis
  • Histology is crucial for examining tissue structure and cell details, but standard methods for cryosectioning small tissues like organoids lack efficiency and cost-effectiveness, hindering analysis.
  • The adapted HistoBrick method uses an optimal embedding mixture of 8% PEGDA and 2.5% gelatine, providing support for fragile samples during cryosectioning and preserving delicate structures of human retinal organoids.
  • Using these PEGDA-gelatine HistoBricks, researchers monitored retinal organoid development over time, finding that photoreceptor cell bodies were sustained for up to 98 weeks, although outer segments diminished, making this approach valuable for increased throughput in tissue studies and research.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!