A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 143

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 143
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 209
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3098
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 574
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 488
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: Attempt to read property "Count" on bool

Filename: helpers/my_audit_helper.php

Line Number: 3100

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3100
Function: _error_handler

File: /var/www/html/application/controllers/Detail.php
Line: 574
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 488
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

T3SEpp: an Integrated Prediction Pipeline for Bacterial Type III Secreted Effectors. | LitMetric

AI Article Synopsis

  • * This research created a new prediction model, T3SEpp, that combines promoter information and various protein features, employing machine learning and deep learning algorithms to enhance prediction accuracy.
  • * T3SEpp demonstrated high accuracy (around 0.94) and significantly reduced false-positive rates compared to existing tools, which will aid in identifying new T3SEs and studying host-pathogen interactions.

Article Abstract

Many Gram-negative bacteria infect hosts and cause diseases by translocating a variety of type III secreted effectors (T3SEs) into the host cell cytoplasm. However, despite a dramatic increase in the number of available whole-genome sequences, it remains challenging for accurate prediction of T3SEs. Traditional prediction models have focused on atypical sequence features buried in the N-terminal peptides of T3SEs, but unfortunately, these models have had high false-positive rates. In this research, we integrated promoter information along with characteristic protein features for signal regions, chaperone-binding domains, and effector domains for T3SE prediction. Machine learning algorithms, including deep learning, were adopted to predict the atypical features mainly buried in signal sequences of T3SEs, followed by development of a voting-based ensemble model integrating the individual prediction results. We assembled this into a unified T3SE prediction pipeline, T3SEpp, which integrated the results of individual modules, resulting in high accuracy (i.e., ∼0.94) and >1-fold reduction in the false-positive rate compared to that of state-of-the-art software tools. The T3SEpp pipeline and sequence features observed here will facilitate the accurate identification of new T3SEs, with numerous benefits for future studies on host-pathogen interactions. Type III secreted effector (T3SE) prediction remains a big computational challenge. In practical applications, current software tools often suffer problems of high false-positive rates. One of the causal factors could be the relatively unitary type of biological features used for the design and training of the models. In this research, we made a comprehensive survey on the sequence-based features of T3SEs, including signal sequences, chaperone-binding domains, effector domains, and transcription factor binding promoter sites, and assembled a unified prediction pipeline integrating multi-aspect biological features within homology-based and multiple machine learning models. To our knowledge, we have compiled the most comprehensive biological sequence feature analysis for T3SEs in this research. The T3SEpp pipeline integrating the variety of features and assembling different models showed high accuracy, which should facilitate more accurate identification of T3SEs in new and existing bacterial whole-genome sequences.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7406222PMC
http://dx.doi.org/10.1128/mSystems.00288-20DOI Listing

Publication Analysis

Top Keywords

prediction pipeline
12
type iii
12
iii secreted
12
t3se prediction
12
t3sepp integrated
8
prediction
8
secreted effectors
8
t3ses
8
whole-genome sequences
8
features
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!

A PHP Error was encountered

Severity: Notice

Message: fwrite(): Write of 34 bytes failed with errno=28 No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 272

Backtrace:

A PHP Error was encountered

Severity: Warning

Message: session_write_close(): Failed to write session data using user defined save handler. (session.save_path: /var/lib/php/sessions)

Filename: Unknown

Line Number: 0

Backtrace: