To investigate the distribution, source, contamination, and ecological risk status of heavy metals in the Red Sea-Gulf of Aqaba coast, Saudi Arabia, 33 surface sediment samples were collected for Fe, Zn, Sb, Co, Cu, Hg, Pb, Mn, Cr, Ni, Cd, As, and TOC analysis using ICP-MS. Three single and three multi-element contamination indices were used to assess the sediment quality. Evaluation of the three single pollution indices suggested some contamination or anthropogenic inputs with Cu, Cd, Hg, and, to a great extent, As. The potential ecological risk indicated low ecological risk at all sites for Pb, Zn, Ni, Cu, Co, Cr, and Sb; and considerable risk for Cd, Hg, and As. Moreover, the average values of Hg and As were higher than those recorded in the sediment quality guidelines. The multivariate statistical tools revealed that Fe, Mn, Cd, Cu, Co, Zn, and Cr were mostly of terrestrial origin, derived from weathering of the nearby Pre-Cambrian basement rocks, Tertiary, and Quaternary sedimentary rocks; while As, Sb, Hg, Ni, and Pb were mostly attributed to anthropogenic activities from traffic emissions, industrial activities, and the dredging of marine sediments. The results of this work will guide the future projects of environmentally sustainable development in northwest Saudi Arabia.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.marpolbul.2020.111411DOI Listing

Publication Analysis

Top Keywords

ecological risk
16
saudi arabia
12
distribution source
8
source contamination
8
contamination ecological
8
risk status
8
status heavy
8
heavy metals
8
metals red
8
red sea-gulf
8

Similar Publications

It is established that patients hospitalised with COVID-19 often have ongoing morbidity affecting activity of daily living (ADL), employment, and mental health. However, little is known about the relative outcomes in patients with COVID-19 neurological or psychiatric complications. We conducted a UK multicentre case-control study of patients hospitalised with COVID-19 (controls) and those who developed COVID-19 associated acute neurological or psychiatric complications (cases).

View Article and Find Full Text PDF

Coal tar-related products as a source of polycyclic aromatic compounds (PACs) are particularly concerning due to high PAC concentrations and inadequate source management. Benzo[b]carbazole, a benzocarbazole isomer exclusively found in coal tar-derived products, acts as an ideal marker to distinguish coal tar sources from others, enabling more robust quantification of coal tar contributions to PACs. To evaluate the historical and recent contributions of coal tar-related sources to the levels of PACs in Lake Ontario and associated ecological risk, we analyzed 31 PACs and 3 BCBz isomers in surface sediments and a sediment core.

View Article and Find Full Text PDF

The negative effects associated with cyanobacterial blooms are of particular concern in protected ecosystems, as these areas are ecologically significant and attract a high number of visitors. This study aims to explore the cyanobacterial communities and associated toxicity in three reservoirs located within a Mediterranean National Park with a compromised situation at basin-level. Our results demonstrate the occurrence of dense toxic blooms containing microcystins (reaching values close to 280 μg L) and low levels of anatoxin-a and saxitoxins (up to 0.

View Article and Find Full Text PDF

Nano-plastics (NPs) and heavy metals have attracted growing scientific attention because of both pollutants' wide distribution and ecotoxicity. However, the long-term combined toxicity of NPs and mercury (Hg) on planktonic copepods, a crucial presence in marine environments, is unknown. Here, our study aimed to investigate the multigenerational phenotypic responses of the planktonic copepod Pseudodiaptomus annandalei to polystyrene NPs (about 50 nm) and Hg (alone or combined) at environmentally realistic concentrations (23 μg/L for NPs and 1 μg/L for Hg), and the underlying molecular mechanisms were explored.

View Article and Find Full Text PDF

Experimental observations and field data demonstrated that predators adapt their hunting strategies in response to prey abundance. While previous studies explored the impact of predation risk on predator-prey interactions, the impact of symbiotic relationships between fear-affected prey and non-prey species on system dynamics remains unexplored. This study uses a mathematical approach to investigate how different symbiotic relationships govern system dynamics when predators adapt to prey availability.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!