RNA interference (RNAi) has been of interest given its role in genetic interference. More significantly, recent studies provided evidence of it being one of the antiviral response mechanisms in humans. Argonaute (Ago) protein plays a central role in the RNA-induced silencing complex (RISC) that cleaves mRNA. Molecular crowding in cellular systems is known to impact dynamics and interactions of biomolecules. We present here the results from our molecular dynamics simulations based study on the interfaces between Ago, miRNA and Target RNA in presence of molecular crowders. 6 simulations at 3 crowder concentrations, including the aqueous condition, were performed. Our results indicate that crowding changes the dynamics, makes the complex stabler and aids binding free energy. More importantly, features conserved across the three systems and amino acid residues with crowding resilient interactions with RNA are identified.Communicated by Ramaswamy H. Sarma.

Download full-text PDF

Source
http://dx.doi.org/10.1080/07391102.2020.1800511DOI Listing

Publication Analysis

Top Keywords

molecular crowding
8
molecular
4
crowding conserved
4
conserved interface
4
interface interactions
4
interactions human
4
human argonaute
4
argonaute protein-mirna-target
4
protein-mirna-target mrna
4
mrna complex
4

Similar Publications

Metal carbides with earth-abundant elements are widely regarded as promising alternatives of noble metal catalysts. Although comparable catalytic performances have been observed for metal carbides in several types of reactions, precise control of reaction pathways on them remains a formidable challenge, partially due to strong adsorption of reactants or intermediates. In this study, we show that bimolecular dehydrogenation of methanol to methyl formate and H2 is kinetically favored on bare α-MoC catalysts, while monomolecular dehydrogenation to CO and H2 becomes the dominant pathway when α-MoC is decorated with crowding atomic Ni species.

View Article and Find Full Text PDF

Highly Efficient Analysis on Biomass Carbohydrate Mixtures by DREAMTIME NMR Spectroscopy.

Anal Chem

December 2024

Department of Electronic Science, Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance, State Key Laboratory of Physical Chemistry of Solid Surfaces, Xiamen University, Siming South Road 422, Xiamen 361005, China.

Proton (H) NMR spectroscopy presents a powerful tool for biomass mixture studies by revealing the involved chemical compounds with identified ingredients and molecular structures. However, conventional H NMR generally suffers from spectral congestion when measuring biomass mixtures, particularly biomass carbohydrate samples, that contain various physically and chemically similar compounds. In this study, a targeted detection NMR approach, DREAMTIME, is exploited for studying biomass carbohydrate mixtures by spectroscopically targeting the desired compounds in separate 1D NMR spectra.

View Article and Find Full Text PDF

is intrinsically resistant to the widely used antifungal fluconazole, and therapeutic failure can result from acquired resistance to voriconazole, the primary treatment for invasive aspergillosis. The molecular basis of substrate specificity and innate and acquired resistance of to azole drugs were addressed using crystal structures, molecular models, and expression in of the sterol 14α-demethylase isoforms AfCYP51A and AfCYP51B targeted by azole drugs, together with their cognate reductase AfCPRA2 and AfERG6 (sterol 24-C-methyltransferase). As predicted by molecular modelling, functional expression of CYP51A and B required eburicol and not lanosterol.

View Article and Find Full Text PDF

Tuning the Crowding Effect of Water and Imidazole in Covalent Organic Frameworks for Proton Conduction.

ACS Appl Mater Interfaces

December 2024

School of Material Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore.

The proton conduction of imidazole under confined conditions has attracted widespread attention from researchers. Under anhydrous conditions, the proton transfer behavior is primarily governed by the molecular dynamics of imidazole. However, within a water-mediated system, the crowding effect of water and imidazole in a confined space may outweigh the intrinsic properties of imidazole itself.

View Article and Find Full Text PDF

Molecular Crowding Suppresses Mechanical Stress-Driven DNA Strand Separation.

bioRxiv

December 2024

Department of Molecular Biosciences, Northwestern University, Evanston, Illinois 60208, USA.

Molecular crowding influences DNA mechanics and DNA - protein interactions and is ubiquitous in living cells. Quantifying the effects of molecular crowding on DNA supercoiling is essential to relating experiments to DNA supercoiling. We use single molecule magnetic tweezers to study DNA supercoiling in the presence of dehydrating or crowding co-solutes.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!