A hybrid scanning tunneling/optical near-field microscope is presented, in which an optical fiber tip coated with 100 nm thick Ag/Cr films scans the surface. The tip metallization enables operating the instrument via a current-based distance control and guarantees sub-nanometer spatial resolution in the topographic channel. The fiber tip simultaneously serves as nanoscale light source, given the optical transparency of the metal coating. The emission response of the tip-sample junction is collected with two parabolic mirrors and probed with a far-field detector. To test the capabilities of the new setup, the evolution of the optical signal is monitored when the tip approaches a gold surface. The intensity rise and frequency shift of the emission provide evidence for the development of coupled plasmon modes in the tip-sample cavity. Photon mapping is employed to probe the optical inhomogeneity of Ru(0001) and TiO(110) surfaces covered with silver deposits. While the 2D Ag flakes on Ru give rise to a near-field enhancement, the 3D particles on titania locally damp the gap plasmons and lower the emitted intensity. The lateral resolution in the optical channel has been estimated to be ∼1 nm, and optical and topographic signals are well correlated. Our fiber microscope thus appears to be suitable for probing optical surface properties at the nanoscale.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1063/5.0009182 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!