Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Unlike the audio sound generated by traditional sources, the directivity of that generated by a parametric array loudspeaker (pal) deteriorates significantly after passing through a thin partition. To study this phenomenon, the pal radiation model based on the Westervelt equation, and the plane wave expansion method are used to calculate the sound fields behind a sheet of aluminum foil and a porous material blanket under the quasi-linear assumption, where the paraxial approximation is assumed only for ultrasonic waves. The audio sounds generated by a point monopole and a traditional directional source are presented for comparison. Both simulation and experiment results show that the transmitted sound from a pal behind the thin partition is small and less focused on the radiation axis because most of the ultrasounds forming the directivity of the pal is blocked by the thin partition which has little effect on the traditional audio sources.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1121/10.0001568 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!