Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
We have implemented the Martini force field within Lawrence Livermore National Laboratory's molecular dynamics program, ddcMD. The program is extended to a heterogeneous programming model so that it can exploit graphics processing unit (GPU) accelerators. In addition to the Martini force field being ported to the GPU, the entire integration step, including thermostat, barostat, and constraint solver, is ported as well, which speeds up the simulations to 278-fold using one GPU vs one central processing unit (CPU) core. A benchmark study is performed with several test cases, comparing ddcMD and GROMACS Martini simulations. The average performance of ddcMD for a protein-lipid simulation system of 136k particles achieves 1.04 µs/day on one NVIDIA V100 GPU and aggregates 6.19 µs/day on one Summit node with six GPUs. The GPU implementation in ddcMD offloads all computations to the GPU and only requires one CPU core per simulation to manage the inputs and outputs, freeing up remaining CPU resources on the compute node for alternative tasks often required in complex simulation campaigns. The ddcMD code has been made open source and is available on GitHub at https://github.com/LLNL/ddcMD.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1063/5.0014500 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!