In this paper, a fixed-time terminal synergetic observer for synchronization of fractional-order nonlinear chaotic systems is proposed. First, fixed-time terminal attractors for fractional-order nonlinear systems are introduced on the basis of fixed-time stability of integer-order nonlinear differential equations and on defining particular fractional-order macro-variables. Second, a new synergetic observer dedicated to the synchronization of fractional-order chaotic systems is developed. The proposed observer converges in a predefined fixed-time uniformly bounded with respect to initial conditions. Thanks to the step-by-step procedure, only one communication channel is used to achieve the synchronization. Third, a fixed-time synergetic extended observer with unknown input is constructed to simultaneously estimate the state variables and to recover the unknown input. Finally, computer simulations are performed to illustrate the efficiency of the proposed synchronization method and its application in a secure communication scheme.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1063/1.5142989 | DOI Listing |
Biomimetics (Basel)
January 2025
School of Engineering, University of Kent, Canterbury CT2 7NZ, UK.
Pneumatic artificial muscles (PAMs) are flexible actuators that can be contracted or expanded by applying air pressure. They are used in robotics, prosthetics, and other applications requiring flexible and compliant actuation. PAMs are basically designed to mimic the function of biological muscles, providing a high force-to-weight ratio and smooth, lifelike movement.
View Article and Find Full Text PDFISA Trans
December 2024
Department of Automation, Key Laboratory of System Control and Information Processing of Ministry of Education, Key Laboratory of Marine Intelligent Equipment and System of Ministry of Education, Shanghai Engineering Research Center of Intelligent Control and Management, Shanghai Jiao Tong University, Shanghai 200240, China. Electronic address:
This paper presents the design of a disturbance rejection-based control strategy for a quadrotor unmanned aerial vehicle subject to model uncertainties and external disturbances described by turbulent wind gusts of severe intensity. First, an extended state observer is introduced to supply full-state and total disturbance estimations within a fixed time regardless of initial estimation errors. Then, an adaptive non-singular fast terminal sliding mode controller with a single-gain structure is proposed to reduce the tuning complexity and drive the pose of the rotorcraft while providing practical finite-time convergence, robustness to bounded external disturbances, non-overestimation of its control gain, and chattering attenuation.
View Article and Find Full Text PDFISA Trans
January 2025
Institute of Electrical Power Engineering, Faculty of Electrical Engineering, Warsaw University of Technology, Warsaw, Poland. Electronic address:
A suitable controller for the Continuous Stirred Tank Reactor (CSTR) plays a crucial role in the reactor's performance. This paper presents a novel observer-based sliding mode controller designed to control the CSTR with high accuracy and a fast response. The stability of the proposed method is analyzed using Lyapunov theory.
View Article and Find Full Text PDFSci Rep
October 2024
Department of Theoretical Electrical Engineering and Diagnostics of Electrical Equipment, Institute of Electrodynamics, National Academy of Sciences of Ukraine, Beresteyskiy, 56, Kyiv-57, 03680, Ukraine.
DC grid fault protection techniques have previously faced challenges such as fixed thresholds, insensitivity to high-resistance faults, and dependency on specific threshold settings. These limitations can lead to elevated fault currents in the grid, particularly affecting multi-modular converters (MMCs) vulnerability to large fault current transients. This paper proposes a novel approach that combines the disjoint-based Bootstrap Aggregating (Bagging) technique and Bayesian optimization (BO) for fault detection in DC grids.
View Article and Find Full Text PDFPLoS One
August 2024
School of Automation, Nanjing University of Science and Technology, Nanjing, Jiangsu, China.
For nonlinear systems subjected to external disturbances, an adaptive terminal sliding mode control (TSM) approach with fixed-time convergence is presented in this paper. The introduction of the fixed-time TSM with the sliding surface and the new Lemma of fixed-time stability are the main topics of discussion. The suggested approach demonstrates quick convergence, smooth and non-singular control input, and stability within a fixed time.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!