Quantum key distribution (QKD) can help two distant peers to share secret key bits, whose security is guaranteed by the law of physics. In practice, the secret key rate of a QKD protocol is always lowered with the increasing of channel distance, which severely limits the applications of QKD. Recently, twin-field (TF) QKD has been proposed and intensively studied, since it can beat the rate-distance limit and greatly increase the achievable distance of QKD. Remarkalebly, K. Maeda et. al. proposed a simple finite-key analysis for TF-QKD based on operator dominance condition. Although they showed that their method is sufficient to beat the rate-distance limit, their operator dominance condition is not general, i.e. it can be only applied in three decoy states scenarios, which implies that its key rate cannot be increased by introducing more decoy states, and also cannot reach the asymptotic bound even in case of preparing infinite decoy states and optical pulses. Here, to bridge this gap, we propose an improved finite-key analysis of TF-QKD through devising new operator dominance condition. We show that by adding the number of decoy states, the secret key rate can be furtherly improved and approach the asymptotic bound. Our theory can be directly used in TF-QKD experiment to obtain higher secret key rate. Our results can be directly used in experiments to obtain higher key rates.

Download full-text PDF

Source
http://dx.doi.org/10.1364/OE.397087DOI Listing

Publication Analysis

Top Keywords

operator dominance
16
dominance condition
16
secret key
16
key rate
16
decoy states
16
finite-key analysis
12
key
8
quantum key
8
key distribution
8
beat rate-distance
8

Similar Publications

Introduction: Alzheimer's disease (AD) in Down syndrome (DS) is associated with changes in brain structure. It is unknown if thickness and volumetric changes can identify AD stages and if they are similar to other genetic forms of AD.

Methods: Magnetic resonance imaging scans were collected for 178 DS adults (106 nonclinical, 45 preclinical, and 27 symptomatic).

View Article and Find Full Text PDF

Although detailed analytical models for droop-controlled microgrids are available, they are computationally complex and do not consider real-time variations in microgrid parameters and operating conditions. This paper proposes Kurtosis-Estimation of Signal Parameters via Rotational Invariance Technique (ESPRIT) to identify the dominant modes in droop-controlled inverter-based microgrids (IBMGs) using local real-time measurements. In the proposed approach, a short-duration small disturbance is applied to the selected DG's active power droop gain, and then, the system's dominant modes are estimated from its local measurements.

View Article and Find Full Text PDF

Objective: To investigate the associations between a comprehensive set of retinal vascular parameters and incident stroke to unveil new associations and explore its predictive power for stroke risk.

Methods: Retinal vascular parameters were extracted from the UK Biobank fundus images using the Retina-based Microvascular Health Assessment System. We used Cox regression analysis, adjusted for traditional risk factors, to examine the associations, with false discovery rate adjustment for multiple comparisons.

View Article and Find Full Text PDF

Background: Extended monovision is a novel mix-and-match approach that has been recently introduced. It involves implanting an aspherical monofocal intraocular lens (IOL) for distance vision in the dominant eye, and a bifocal extended depth-of-focus (EDOF) IOL in the nondominant eye. The target refraction for the nondominant eye is - 1.

View Article and Find Full Text PDF

Background: Computed tomography (CT)-derived low muscle mass is associated with adverse outcomes in critically ill patients. Muscle ultrasound is a promising strategy for quantitating muscle mass. We evaluated the association between baseline ultrasound rectus femoris cross-sectional area (RF-CSA) and intensive care unit (ICU) mortality.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!