Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
We report on our realization of a high-power holmium doped fiber laser, together with the validation of our numerical simulation of the laser. We first present the measurements of the physical parameters that are mandatory to model accurately the laser-holmium interactions in our silica fiber. We then describe the realization of the clad-pumped laser, based on a triple-clad large mode area holmium (Ho) doped silica fiber. The output signal power is 90 W at 2120 nm, with an efficiency of about 50% with respect to the coupled pump power. This efficiency corresponds to the state of the art for clad-pumped Ho-doped fiber lasers in the 100 W power class. By comparing the experimental results to our simulation, we demonstrate its validity and use it to show that the efficiency is limited, for our fiber, by the non-saturable absorption caused by pair-induced quenching between adjacent holmium ions.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1364/OE.394011 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!