In this paper, we analyze a cylindrical waveguide consisting of two layers of bianisotropic material with anti-symmetric magnetoelectric coupling tensors. The analysis is carried out in terms of pseudo-electric and pseudo-magnetic fields which satisfy Maxwells' equations with gyrotropic permittivity and permeability tensors. We show that the rotationally symmetric modes of the waveguide are unidirectional with transverse pseudo-electric and transverse pseudo-magnetic modes propagating in opposite directions. These modes are surface waves whose electromagnetic field is concentrated near the interface between the two anisotropic materials. They follow the contour of the interface even in the case of sharp discontinuities and pass through an obstacle without backscattering if the obstacle does not change the polarization of the wave. Higher-order modes of the waveguide are also investigated. Although these modes are hybrid modes and not, strictly speaking, unidirectional, they practically behave as the rotationally symmetric mode.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1364/OE.399463 | DOI Listing |
ACS Photonics
December 2024
Graduate School and Faculty of Information Science and Electrical Engineering, Kyushu University, 744 Motooka Nishi-ku, Fukuoka, 819-0395, Japan.
Whispering-gallery mode (WGM) resonators, renowned for their high Q-factors and narrow line widths, are widely utilized in integrated photonics. Integrating diffraction gratings onto WGM cavities has gained significant attention because these gratings function as azimuthal refractive index modulators, enabling single-mode WGM emissions and supporting beams with orbital angular momentum (OAM). The introduction of curved grating structures facilitates guided mode resonances by coupling high-order diffracted waves with leaking modes from the waveguide.
View Article and Find Full Text PDFThere are some issues with traditional whispering gallery mode (WGM) resonators such as poor light extraction and a dense mode spectrum. In this paper, we introduce a solution to these limitations by proposing open WGM (OWGM) resonators that effectively reduce the mode density and enable directional radiation through a connected waveguide at the expense of some lowering in Q-factor. Numerical simulations of two-dimensional metallic and dielectric disk resonators with holes reveal a significant increase in intermode distance.
View Article and Find Full Text PDFThe development of methods for the generation of strong ultrafast electromagnetic pulses in the terahertz (THz) spectral range has led to a surge of progress in nonlinear THz spectroscopy and THz control of molecular and collective responses. For spectroscopy in the 1-THz range, the submillimeter wavelengths and associated large spot sizes, large optical elements, and short distances between final focusing elements and samples can lead to cumbersome experimental setups that are incompatible with some sample environments. Here, we introduce a novel terahertz ring excitation (TREx) optical pumping geometry to generate superposing, focusing fields in planar THz waveguides made out of the electro-optic material lithium tantalate.
View Article and Find Full Text PDF3D Print Addit Manuf
June 2024
VTT Technical Research Centre of Finland, Espoo, Finland.
This article presents the design, fabrication, and characterization of edge-coupled 1D optical phased arrays (OPAs) combined with collimating lenses. Our concept was tested with two OPAs having different collimation ranges. Both OPA designs have 3-μm waveguide spacing and the maximum beam steering range is about 30° based on wavelength tuning around 1550 nm.
View Article and Find Full Text PDFSci Rep
September 2024
Department of Physics, Sikkim Manipal Institute of Technology, Sikkim Manipal University, Sikkim, 737136, India.
Ion phase-space holes are solitary kinetic structures found in the ion phase-space of collision-less plasmas, and are nonlinear solutions to the Vlasov-Poisson equations, identified as Bernstein-Greene-Kruskal (BGK) modes. In this study, interactions between an ion phase-space hole and a travelling ion KdV soliton is presented. This interaction, which is simulated in a fully ionised highly magnetised plasma within a cylindrical wave-guide, exhibits acceleration and deacceleration of the ion hole, depending on its mode of collision with the travelling ion soliton.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!