A theoretical analysis based on mirror symmetry is proposed to analyze and predict the symmetry in intensity, phase and polarization distributions of the tightly focused vector optical field (VOF). We extend the analysis to more cases including more complicated polarization states and weak focusing cases. We further show the symmetric tightly focused fields of the eccentric cylindrical VOF and the redesigned VOF with a radially variant polarization state, which are achieved by redesigning the polarization state of the incident VOF based on the symmetry analysis. We also take the laser fabrication as an example to further show how to apply this symmetry analysis in a specific application area. Such a theoretical analysis can improve the calculation efficiency, provide new insights into the tight focusing process and offer a convenient way to engineer the field distributions in the focal plane, which may have potential applications in areas needing flexibly controllable tightly focused fields, such as laser fabrication, optical trapping, and optical storage.

Download full-text PDF

Source
http://dx.doi.org/10.1364/OE.399070DOI Listing

Publication Analysis

Top Keywords

tightly focused
16
theoretical analysis
12
analysis based
8
based mirror
8
mirror symmetry
8
focused vector
8
vector optical
8
focused fields
8
polarization state
8
symmetry analysis
8

Similar Publications

Unlabelled: Growth hormone (GH) plays a crucial role in various physiological functions, with its secretion tightly regulated by complex endocrine mechanisms. Pathological conditions such as acromegaly or pituitary tumors result in elevated circulating GH levels, which have been implicated in a spectrum of metabolic disorders, potentially by regulating liver metabolism. In this study, we focused on the liver, a key organ in metabolic regulation and a primary target of GH, to investigate the impact of high circulating GH on liver metabolism.

View Article and Find Full Text PDF

Optical Precise Ablation of Targeted Individual Neurons In Vivo.

ACS Chem Neurosci

January 2025

School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200030, P. R. China.

Targeted cell ablation is a powerful strategy for investigating the function of individual neurons within neuronal networks. Multiphoton ablation technology by a tightly focused femtosecond laser, with its significant advantages of noninvasiveness, high efficiency, and single-cell resolution, has been widely used in the study of neuroscience. However, the firing activity of the ablated neuron and its impact on the surrounding neurons and entire neuronal ensembles are still unclear.

View Article and Find Full Text PDF

The spin angular momentum (SAM) plays a significant role in light-matter interactions. It is well known that light carrying SAM can exert optical torques on micro-objects and drive rotations, but 3D rotation around an arbitrary axis remains challenging. Here, we demonstrate full control of the 3D optical torque acting on a trapped microparticle by tailoring the vectorial SAM transfer.

View Article and Find Full Text PDF

Phosphorus (P) movement in soils is influenced by flow velocities, diffusion rates, and several soil characteristics and properties. In acidic soils, P is tightly bound to soil particles, reducing its availability to plants. Organomineral fertilizers combine organic matter with mineral nutrients, enhancing P fertilization efficiency, and reducing environmental impacts.

View Article and Find Full Text PDF

A GLOBAL VIEW OF HEPATOLOGY COLLABORATION: INSIGHTS AND FUTURE DIRECTIONS FROM 30 YEARS OF NETWORK ANALYSIS (1994-2023).

Arq Gastroenterol

January 2025

Editorial Department, The Japanese Society of Internal Medicine, Tokyo, Japan.

Background: This study aims to analyze the structural dynamics of research collaboration in hepatology over a 30-year period (1994-2023), focusing on co-authorship networks. By examining data from the Web of Science Core Collection, the study explores key metrics such as network density, clustering coefficient, and centrality measures, providing insights into how collaborative efforts have shaped the field of hepatology.

Methods: Using Python (Version 3.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!