Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Silicon accumulation type modulators offer prospects of high power efficiency, large bandwidth and high voltage phase linearity making them promising candidates for a number of advanced electro-optic applications. A significant challenge in the realisation of such a modulator is the fabrication of the passive waveguide structure which requires a thin dielectric layer to be positioned within the waveguide, i.e. slotted waveguides. Simultaneously, the fabricated slotted waveguide should be integrated with conventional rib waveguides with negligible optical transition losses. Here, successful integration of polysilicon and silicon slot waveguides enabling a low propagation loss 0.4-1.2 dB/mm together with an ultra-small optical mode conversion loss 0.04 dB between rib and slot waveguides is demonstrated. These fabricated slot waveguide with dielectric thermal SiO layer thicknesses around 6 nm, 8 nm and 10 nm have been characterized under transmission electron microscopy allowing for strong carrier accumulation effects for MOS-capacitor electro-optic modulators.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1364/OE.397044 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!