Urinary tract infections (UTIs) in women represent a common bacteriological finding, with negligible recent and consistent research on antimicrobial resistance (AMR) in the female population. We designed a retrospective study to observe the incidence of frequent uropathogens and their resistance rates to common antibiotics. We elaborated multicenter research in three different teaching hospitals in Romania, analyzing 13,081 urine samples, of which 1588 met the criteria of inclusion. (58.37%) was the most frequent Gram-negative uropathogen, presenting high resistance rates to levofloxacin ( = 29.66%), amoxicillin-clavulanic ac. ( = 14.13%), and ceftazidime ( = 6.68%). We found good sensitivity to imipenem and meropenem (both 98.16%), amikacin ( = 96.0%), and fosfomycin ( = 90.39%). The second most prevalent uropathogen was (16.93%), with the highest resistance quota to amoxicillin-clavulanic ac. ( = 28.62%), levofloxacin and nitrofurantoin (both = 15.61%), and ceftazidime ( = 15.24%), and good sensitivity to imipenem ( = 93.93%), meropenem ( = 91.91%), and amikacin ( = 88.47%). (13.35%) was the most encountered Gram-positive pathogen. It proved the highest resistance to levofloxacin ( = 32.07%), penicillin ( = 32.07%), and ampicillin ( = 14.62%) and good sensitivity to vancomycin ( = 91.98%), fosfomycin ( = 94.4%), and nitrofurantoin ( = 89.15%). Considering the lack of recent and consistent data on this topic, we find our survey a valuable starting research study in this area with high significance for an accurate clinical approach.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7459805 | PMC |
http://dx.doi.org/10.3390/antibiotics9080472 | DOI Listing |
Sci Rep
January 2025
Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, College of Food Science and Engineering, Inner Mongolia Agricultural University, Hohhot, 010018, China.
Aflatoxin M1 (AFM1) is known to be carcinogenic, mutagenic, and teratogenic and poses a serious threat to food safety and human health, which makes its surveillance critical. In this study, an indirect competitive ELISA (icELISA) based on a nanobody (Nb M4) was developed for the sensitive and rapid detection of AFM1 in dairy products. In our previous work, Nb M4 was screened from a Bactrian-camel-immunized phage-displayed library.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing 100083, China; State Key Laboratory of Efficient Production of Forest Resources, Beijing Forestry University, Beijing 100083, China. Electronic address:
Due to the emphasis on the environmental and health issues caused by petroleum-based plastics, renewable lignocellulosic materials emerge as promising substitutes. However, their practical application remains hindered by unsatisfactory properties such as fragility and sensitivity to water. Dealing with the challenge of non-thermal processing of xylan and addressing the issue of performance degradation resulting from the hygroscopicity of materials.
View Article and Find Full Text PDFAnal Biochem
January 2025
Key Laboratory of Green and Precise Synthetic Chemistry and Applications, Ministry of Education, Anhui Provincial Key Laboratory of Synthetic Chemistry and Applications, College of Chemistry and Materials Science, Huaibei Normal University, Huaibei, Anhui 235000, PR China. Electronic address:
Luminol-loaded mesoporous carbon nanospheres (MCs@LU) were utilized to develop a highly sensitive electrochemiluminescence (ECL) sensor for the detection of L-cysteine (L-Cys). L-Cys acted as the coreactant of luminol, and the pore confinement effect of mesoporous carbons (MCs) resulted in a robust ECL signal. Upon optimization, a linear correlation between the ECL intensity and L-Cys concentration was observed over the range of 5.
View Article and Find Full Text PDFTalanta
December 2024
Department of Food Science and Engineering, College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, China; Shenzhen Key Laboratory of Food Macromolecules Science and Processing, Shenzhen University, Shenzhen 518060, China. Electronic address:
The simultaneous detection and removal of Ag from drinking water was crucial for preventing human health, while it was also extremely challenging due to bifunctional materials that combine both Ag adsorption and detection functions rarely being explored. In this study, a benzotrithiophene-based covalent organic framework (TAPA-BTT) was synthesized and applied to detect and remove Ag. TAPA-BTT exhibited high crystallinity, a large specific surface area, and good thermal stability.
View Article and Find Full Text PDFTalanta
January 2025
College of Chemistry and Materials Science, Hunan Engineering Research Center for Monitoring and Treatment of Heavy Metals Pollution in the Upper Reaches of Xiangjiang River, Hengyang Normal University, Hengyang, 421001, China. Electronic address:
The accurate and sensitive quantification of hydroxyl radical (·OH) and glucose is necessary for disease diagnosis and health guidance, but still challenging owing to the low concentration of ·OH and poor water solubility of fluorescent probes. In addition, fluorescent probes may cause secondary pollution to the environment. Here an organic cage was reported as a sensitive fluorescent probe for ·OH and glucose in aqueous solution without serious secondary pollution.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!