This publication presents the new trends and opportunities for further development of coordination compounds used in the chemical industry. The review describes the influence of various physicochemical factors regarding the coordination relationship (for example, steric hindrance, electron density, complex geometry, ligand), which condition technological processes. Coordination compounds are catalysts in technological processes used during organic synthesis, for example: Oxidation reactions, hydroformylation process, hydrogenation reaction, hydrocyanation process. In this article, we pointed out the possibilities of using complex compounds in catalysis, and we noticed what further research should be undertaken for this purpose.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7432526PMC
http://dx.doi.org/10.3390/ijms21155443DOI Listing

Publication Analysis

Top Keywords

coordination compounds
12
technological processes
8
application coordination
4
compounds
4
compounds transition
4
transition metal
4
metal ions
4
ions chemical
4
chemical industry-a
4
industry-a review
4

Similar Publications

The photophysical properties of six new luminescent tetrahedral Zn(II) complexes are presented that survey two electronic donor moieties (phenolate and carbazolate) and three electronic acceptors (pyridine, pyrimidine, and pyrazine). A unique ligand based on an -terphenyl motif forms an eight-membered chelate, which enhances through-space charge-transfer (CT) interactions by limiting through-bond conjugation between the donor and acceptor. A single isomeric product was obtained in yields up to 90%.

View Article and Find Full Text PDF

Current strategies centred on either merging or linking initial hits from fragment-based drug design (FBDD) crystallographic screens generally do not fully leaverage 3D structural information. We show that an algorithmic approach (Fragmenstein) that 'stitches' the ligand atoms from this structural information together can provide more accurate and reliable predictions for protein-ligand complex conformation than general methods such as pharmacophore-constrained docking. This approach works under the assumption of conserved binding: when a larger molecule is designed containing the initial fragment hit, the common substructure between the two will adopt the same binding mode.

View Article and Find Full Text PDF

Low-temperature catalytic oxidation of ethanol over doped nickel phosphates.

Environ Sci Pollut Res Int

January 2025

Laboratory of Coordination and Analytical Chemistry (LCCA), Department of Chemistry, Faculty of Sciences, Chouaïb Doukkali University, Ben Maachou Road, B.P: 20, 24000, El Jadida, Morocco.

This work is focused on the synthesis and performance of Ni(PO)-based catalysts doped with Cu, Co, Mn, Ce, Zr, and Mg for the complete oxidation of ethanol, aiming at reducing emissions from ethanol-blended gasoline. Nickel phosphate was prepared via the co-precipitation method, followed by impregnation with the specified dopants. The catalysts were thoroughly characterized by XRD, N-physisorption, XRF, FTIR and Raman spectroscopy, FESEM, NH-TPD, CO-TPD, and H-TPR to explain their performance.

View Article and Find Full Text PDF

Dual-mode luminescence and colorimetric sensing for Al and Fe/Fe ions in water using a zinc coordination polymer.

Spectrochim Acta A Mol Biomol Spectrosc

January 2025

Materials Chemistry Research Center, Department of Chemistry, Faculty of Science, Khon Kaen University, Khon Kaen 40002 Thailand. Electronic address:

A zinc(II) coordination polymer, [Zn(Hdhtp)(2,2'-bpy)(HO)] (1), has been utilized as a dual-mode luminescence-colorimetric sensor (Hdhtp = 2,5-dihydroxy terephthalate and 2,2'-bpy = 2,2'-bipyridine). The presence of hydroxyl groups in Hdhtp can promote excited-state intra- and intermolecular proton transfer (ESIPT) phenomena. Therefore, compound 1, which displays high stability in aqueous environments, exhibits a strong green-yellow photoluminescence.

View Article and Find Full Text PDF

Rationalization of the structural, electronic and photophysical properties of silver(I) halide -picolylamine hybrid coordination polymers.

Dalton Trans

January 2025

Consiglio Nazionale delle Ricerche, Istituto per la Sintesi Organica e la Fotoreattività (CNR-ISOF), Via Piero Gobetti 101, 40129 Bologna, Italy.

Hybrid coordination polimers based on AgX (with X = Cl, Br) and 2-, 3-, 4-picolylamine ligands, obtained by means of solvent-free methods, show peculiar luminescence properties that are strongly influenced by their structural motif, which in turn is defined by the adopted isomer of the ligand. A comprehensive study, combining photophysical methods and DFT calculations, allowed to rationalize the emissive behaviour of such hybrid coordination polymers in relation to their crystal structures and electronic properties. By means of luminescence measurements at variable temperatures, the nature of the emissive excited states and their deactivation dynamics was interpreted, revealing XMLCT transitions in the [(AgX)(2-pica)] compounds, a TADF behaviour in the case of 3-pica derivatives, and a dual emission at room temperature for the [(AgX)(4-pica)] family.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!