Advanced Design of Fiber-Based Particulate Filters: Materials, Morphology, and Construction of Fibrous Assembly.

Polymers (Basel)

Department of Textiles, Merchandising and Fashion Design, Seoul National University, Seoul 08826, Korea.

Published: July 2020

With increasing air pollution and sporadic outbreaks of epidemics, there is ramping attention on the filtration devices. The main constituents of airborne pollutants are particulate matters of solid particles, liquid aerosol, bioaerosol/bio-droplets, and gas/vapor. With the growing demand for high-performance filters, novel materials and functionalities are being developed applying advanced technologies. In this paper, recent developments of fiber-based particulate filters are reviewed, with a focus on the important performance parameters and material properties. Trends in technology and research activities are briefly reviewed, and the evaluative measures of filtration performance are reported. Recent studies on the advanced filter materials are reviewed in the aspect of polymers and the fabrication process of fibrous assembly. The characterization method including 3D modeling and simulation is also briefly introduced. Multifunctional filters such as antimicrobial filter and gas and particulate filters are briefly introduced, and efforts for developing environmentally sustainable filters are noted.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7464808PMC
http://dx.doi.org/10.3390/polym12081714DOI Listing

Publication Analysis

Top Keywords

particulate filters
12
fiber-based particulate
8
fibrous assembly
8
filters
6
advanced design
4
design fiber-based
4
particulate
4
filters materials
4
materials morphology
4
morphology construction
4

Similar Publications

Background: The COVID-19 pandemic highlighted the need for improved infectious aerosol concentrations through interventions that reduce the transmission of airborne infections. The aims of this review were to map the existing literature on interventions used to improve infectious aerosol concentrations in hospitals and understand challenges in their implementation.

Methods: We reviewed peer-reviewed articles identified on three databases, MEDLINE, Web of Science, and the Cochrane Library from inception to July 2024.

View Article and Find Full Text PDF

Classroom air quality in a randomized crossover trial with portable HEPA air cleaners.

J Expo Sci Environ Epidemiol

January 2025

Department of Environmental and Occupational Health, Joe C. Wen School of Population & Public Health, University of California, Irvine, CA, USA.

Background: Children living in communities with lower socioeconomic status and higher minority populations are often disproportionately exposed to particulate matter (PM) compared to children living in other communities.

Objective: We assessed whether adding HEPA filter air cleaners to classrooms with existing HVAC systems reduces indoor air pollution exposure.

Methods: From July 2022 to June 2023, using a block randomized crossover trial of 17 Los Angeles Unified School District elementary schools, classroom PM concentrations were monitored and compared for 99 classrooms with HEPA filter air cleaners and 87 classrooms with non-HEPA filter air cleaners.

View Article and Find Full Text PDF

Carbon filter layer for respirator derived from acrylic filter felt.

Waste Manag

January 2025

Department of Material Engineering, Faculty of Textile Engineering, Technical University of Liberec, Liberec, Czech Republic.

Pyrolysis emerges as a strategy for handling waste textiles, wherein the conversion of high-carbon-content textile waste into carbonaceous materials facilitates the restoration of its economic value, concurrently mitigating the environmental impact posed by textile waste. The present study fabricated carbon felts for respiratory filter layers through single-step pyrolysis of acrylic filter felts. The advantage of employing conductive carbon felt as a respiratory filter layer is its capability to concurrently serve two functions: filtration and electrical heating for high-temperature disinfection.

View Article and Find Full Text PDF

Rethinking primary particulate matter: Integrating filterable and condensable particulate matter in measurement and analysis.

Sci Total Environ

January 2025

Particle Pollution Research and Management Center, Incheon 21999, Republic of Korea; Department of Environmental Engineering, Inha University, Incheon 22212, Republic of Korea. Electronic address:

The current definition of primary particulate matter (PM) encompasses filterable PM (FPM) and condensable PM (CPM), which are evaluated using two distinct conventional measurement methods: cooling and dilution. While the cooling method exclusively considers the homogenous formation of CPM, the dilution method, closer to real-world conditions, neglects FPM characterization. To overcome this limitation, we propose a doubled-dilution system that enables the parallel characterization of both FPM and primary PM without diverting FPM from the CPM formation pathway.

View Article and Find Full Text PDF

Significant NO Formation in Truck Exhaust Plumes and Its Association with Ambient O: Evidence from Extensive Plume-Chasing Measurements.

Environ Sci Technol

January 2025

School of Environment, State Key Joint Laboratory of Environment Simulation and Pollution Control, Tsinghua University, Beijing 100084, PR China.

Vehicle nitrogen oxides (NO) significantly increase nitrogen dioxide (NO) exposure in traffic-related environments. The NO/NO ratios are crucial for accurate NO modeling and are closely linked to public health concerns. In 2020, we used a mobile platform to follow test trucks (plume-chasing) that were installed with a portable emission measuring system (PEMS) on two restricted driving tracts.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!