The heat-shock response is defined by the transient gene-expression program that leads to the rapid accumulation of heat-shock proteins. This evolutionary conserved response aims at the preservation of the intracellular environment and represents a crucial pathway during the establishment of host-pathogen interaction. In the food-borne pathogen two transcriptional repressors, named HspR and HrcA, are involved in the regulation of the major heat-shock genes. However, the molecular mechanism underpinning HspR and HrcA regulatory function has not been defined yet. In the present work, we assayed and mapped the HspR and HrcA interactions on heat-shock promoters by high-resolution DNase I footprintings, defining their regulatory circuit, which governs heat-shock response. We found that, while DNA-binding of HrcA covers a compact region enclosing a single inverted repeat similar to the so-called Controlling Inverted Repeat of Chaperone Expression (CIRCE) sequence, HspR interacts with multiple high- and low-affinity binding sites, which contain HspR Associated Inverted Repeat (HAIR)-like sequences. We also explored the DNA-binding properties of the two repressors competitively on their common targets and observed, for the first time, that HrcA and HspR can directly interact and their binding on co-regulated promoters occurs in a cooperative manner. This mutual cooperative mechanism of DNA binding could explain the synergic repressive effect of HspR and HrcA observed in vivo on co-regulated promoters. Peculiarities of the molecular mechanisms exerted by HspR and HrcA in are compared to the closely related bacterium that uses homologues of the two regulators.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7464140 | PMC |
http://dx.doi.org/10.3390/microorganisms8081161 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!