Prevalence studies revealed that one-third of the human population is chronically infected with . Presently, such infections are without medical treatment that effectively eradicates the parasite once it is in its latent form. Moreover, the therapeutics used to treat acute infections are poorly tolerated by patients and also cause the parasite to convert into long-lasting tissue cysts. Hence, there is a dire need for compounds with antiparasitic activity against all forms of . This study examines the antiparasitic capacity of nine novel bisphenol Z (BPZ) derivatives to determine whether they possessed any activity that prevented replication. To begin assessing the efficacy of the novel derivatives, parasites were treated with increasing concentrations of the compounds, then doubling assays and MitoTracker staining were performed. Three of the nine compounds demonstrated strong inhibitory activity, i.e., parasite replication significantly decreased with higher concentrations. Additionally, many of the treated parasites exhibited decreases in fluorescent signaling and disruption of mitochondrial morphology. These findings suggest that bisphenol Z compounds disrupt mitochondrial function to inhibit parasite replication and may provide a foundation for the development of new and effective treatment modalities against .
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7466062 | PMC |
http://dx.doi.org/10.3390/microorganisms8081159 | DOI Listing |
Drug Dev Res
February 2025
Department of Pharmaceutical Chemistry, College of Pharmacy, Jouf University, Sakaka, Aljouf, Saudi Arabia.
Leishmaniasis and trypanosomiasis are parasitic diseases that are closely linked to poverty, pose significant local burdens, and are common in tropical and subtropical regions. Various synthetic tetralone derivatives were studied as potential scaffolds for antileishmanial and antitrypanosomal activities. The compounds were studied for their effectiveness against multiple kinetoplastid protozoan pathogens: Leishmania major, Leishmania mexicana, and bloodstream trypomastigotes of Trypanosoma brucei brucei.
View Article and Find Full Text PDFCerebral malaria (CM) is a severe complication of Plasmodium falciparum infection, with resistance to antimalarial drugs, including artemisinin-based combination therapies(ACTs), posing a significant threat. CD4+ naive cells expressing CCR7 are known to play a protective role, as they readily migrate to secondary lymphoid tissues activated by CCL19 chemokines. In an effort to address this challenge, we investigated the impact of Annona muricata, an herbaceous and immunomodulatory plant, on CCL19 concentration.
View Article and Find Full Text PDFTrop Biomed
December 2024
Parasitic Disease Research Center, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand.
Opisthorchis viverrini poses a substantial risk for cholangiocarcinoma (CCA) in Thailand. Despite praziquantel (PZQ) remains the primary treatment for opisthorchiasis, its association with adverse effects and potential CCA development during prolonged treatment, particularly in cases of reinfection and chronic infection, underscores the imperative for alternative herbal interventions with anthelmintic potential. In this context, a prior study suggested the inhibitory effects of Allium sativum L.
View Article and Find Full Text PDFCytokine
January 2025
Department of Molecular Biology and Bioinformatics, Tripura University, Agartala, India. Electronic address:
Transforming growth factor-beta (TGF-β), displaying a dual role in immunosuppression and pathogenesis, has emerged as a key regulator of anti-leishmanial immune responses. In Leishmania infections, TGF-β drives immune deviation by enhancing regulatory T-cell (T-reg) differentiation and inhibiting macrophage activation, suppressing critical antiparasitic responses. This cytokine simultaneously promotes fibroblast proliferation, extracellular matrix production, and fibrosis in infected tissues, which aids in wound healing but impedes immune cell infiltration, particularly in visceral leishmaniasis, where splenic disorganization and compromised immune access are notable.
View Article and Find Full Text PDFPLoS One
January 2025
Department of Pathology, Faculty of Veterinary Science, University of Agriculture, Faisalabad, Pakistan.
Pesticides, including fipronil, are used mainly in agriculture; however, in veterinary and animal husbandry, their potential use is to control the pests responsible for vector-borne diseases. Their residues in agriculture products and direct use on farms are responsible for potentially harming livestock and poultry. So, this study was designed to evaluate the toxico-pathological effects of fipronil on the immune system of poultry birds.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!