The selection of plant species at mine sites is mostly based on metal content in plant parts. Recent works have proposed referring to certain ecological aspects. However, plant traits for plant metal-tolerance still need to be accurately assessed in the field. An abandoned Zn-Pb mine site in Gard (France) offered the opportunity to test a set of ecological criteria. The diversity of micro-habitats was first recorded through floristic relevés and selected categorical and measured plant traits were compared for plant species selection. The floristic composition of the study site consisted in 61 plant species from 31 plant families. This approach enabled us to focus on seven wild plant species naturally growing at the mining site. Their ability to form root symbioses was then observed with a view to phytostabilization management. Four species were considered for phytoextraction: (J. et C. Presl) FK Meyer, L., (Pers.) Schult. and L. The metal content of their aerial and root parts was then determined and compared with that of soil samples collected at the same site. This general approach may lead to the development of a knowledge base for assessment of the ecological restoration trajectory of the site and can help in plant selection for remediation of other metal-rich soils in the Mediterranean area based not only on metal removal but on ecological restoration principles.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7432068 | PMC |
http://dx.doi.org/10.3390/ijerph17155506 | DOI Listing |
BMC Plant Biol
January 2025
Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China.
Background: Non-structural carbohydrates (NSCs) are key substances for metabolic processes in plants, providing energy for growth, development, and responses to environmental stress. Pruning mother bamboo in a clump can significantly affect the NSCs allocation of new shoots, thereby affecting their growth. Moso bamboo (Phyllostachys edulis) is an important economic bamboo species with a highest planting area in China.
View Article and Find Full Text PDFBMC Public Health
January 2025
Social Environment and Health Program, Institute for Social Research, University of Michigan, 426 Thompson St., Ann Arbor, MI, 48104, USA.
Introduction: Levels of plant-based aeroallergens are rising as growing seasons lengthen and intensify with anthropogenic climate change. Increased exposure to pollens could increase risk for mortality from respiratory causes, particularly among older adults. We determined short-term, lag associations of four species classes of pollen (ragweed, deciduous trees, grass pollen and evergreen trees) with respiratory mortality (all cause, chronic and infectious related) in Michigan, USA.
View Article and Find Full Text PDFBMC Ecol Evol
January 2025
Inner Mongolia Autonomous Region Ecological and Agricultural Meteorological Center, Hohhot, 010040, China.
Climate warming has become a hot issue of common concern all over the world, and wind energy has become an important clean energy source. Wind farms, usually built in wild lands like grassland, may cause damage to the initial ecosystem and biodiversity. However, the impact of wind farms on the functional diversity of plant communities remains a subject with unclear outcomes.
View Article and Find Full Text PDFBMC Genomics
January 2025
Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, 400715, China.
Background: Booklice, belonging to the genus Liposcelis (Psocodea: Liposcelididae), commonly known as psocids, infest a wide range of stored products and are implicated in the transmission of harmful microorganisms such as fungi and bacteria. The olfactory system is critical for insect feeding and reproduction. Elucidating the molecular mechanisms of the olfactory system in booklice is crucial for developing effective control strategies.
View Article and Find Full Text PDFBMC Plant Biol
January 2025
College of Life Sciences, Nanjing Normal University, Nanjing, 210023, China.
Background: The confused taxonomic classification of Crucigenia is mainly inferred through morphological evidence and few nuclear genes and chloroplast genomic fragments. The phylogenetic status of C. quadrata, as the type species of Crucigenia, remains considerably controversial.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!