A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Strain Dependence of Energetics and Kinetics of Vacancy in Tungsten. | LitMetric

We investigate the influence of hydrostatic/biaxial strain on the formation, migration, and clustering of vacancy in tungsten (W) using a first-principles method, and show that the vacancy behaviors are strongly dependent on the strain. Both a monovacancy formation energy and a divacancy binding energy decrease with the increasing of compressive hydrostatic/biaxial strain, but increase with the increasing of tensile strain. Specifically, the binding energy of divacancy changes from negative to positive when the hydrostatic (biaxial) tensile strain is larger than 1.5% (2%). These results indicate that the compressive strain will facilitate the formation of monovacancy in W, while the tensile strain will enhance the attraction between vacancies. This can be attributed to the redistribution of electronic states of W atoms surrounding vacancy. Furthermore, although the migration energy of the monovacancy also exhibits a monotonic linear dependence on the hydrostatic strain, it shows a parabola with an opening down under the biaxial strain. Namely, the vacancy mobility will always be promoted by biaxial strain in W, almost independent of the sign of strain. Such unexpected anisotropic strain-enhanced vacancy mobility originates from the Poisson effect. On the basis of the first-principles results, the nucleation of vacancy clusters in strained W is further determined with the object kinetic Monte Carlo simulations. It is found that the formation time of tri-vacancy decrease significantly with the increasing of tensile strain, while the vacancy clusters are not observed in compressively strained W, indicating that the tensile strain can enhance the formation of voids. Our results provide a good reference for understanding the vacancy behaviors in W.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7436091PMC
http://dx.doi.org/10.3390/ma13153375DOI Listing

Publication Analysis

Top Keywords

tensile strain
20
strain
14
vacancy
9
vacancy tungsten
8
hydrostatic/biaxial strain
8
vacancy behaviors
8
energy divacancy
8
binding energy
8
decrease increasing
8
increasing tensile
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!