Thermally Reversible Polymeric Networks from Vegetable Oils.

Polymers (Basel)

Department of Chemical Engineering, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands.

Published: July 2020

Low cross-link density thermally reversible networks were successfully synthesized from jatropha and sunflower oils. The oils were epoxidized and subsequently reacted with furfurylamine to attach furan groups onto the triglycerides, preferably at the epoxide sites rather than at the ester ones. Under the same reaction conditions, the modified jatropha oil retained the triglyceride structure more efficiently than its sunflower-based counterpart, i.e., the ester aminolysis reaction was less relevant for the jatropha oil. These furan-modified oils were then reacted with mixtures of aliphatic and aromatic bismaleimides, viz. 1,12-bismaleimido dodecane and 1,1'-(methylenedi-4,1-phenylene)bismaleimide, resulting in a series of polymers with T ranging between 3.6 and 19.8 °C. Changes in the chemical structure and mechanical properties during recurrent thermal cycles suggested that the Diels-Alder and retro-Diels-Alder reactions occurred. However, the reversibility was reduced over the thermal cycles due to several possible causes. There are indications that the maleimide groups were homopolymerized and the Diels-Alder adducts were aromatized, leading to irreversibly cross-linked polymers. Two of the polymers were successfully applied as adhesives without modifications. This result demonstrates one of the potential applications of these polymers.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7465172PMC
http://dx.doi.org/10.3390/polym12081708DOI Listing

Publication Analysis

Top Keywords

thermally reversible
8
jatropha oil
8
thermal cycles
8
reversible polymeric
4
polymeric networks
4
networks vegetable
4
oils
4
vegetable oils
4
oils low
4
low cross-link
4

Similar Publications

Certain proteins and synthetic covalent polymers experience aqueous phase transitions, driving functional self-assembly. Herein, we unveil the ability of supramolecular polymers (SPs) formed by G4.Cu+ to undergo heating-induced unexpected aqueous phase transitions.

View Article and Find Full Text PDF

Reprocessable and Recyclable Materials for 3D Printing via Reversible Thia-Michael Reactions.

Angew Chem Int Ed Engl

January 2025

Georgia Institute of Technology, School Of Chemistry and Biochemistry, 901 Atlantic Drive, 30332, United States, 30332, Atlanta, UNITED STATES OF AMERICA.

The development of chemically recyclable polymers for sustainable 3D printing is crucial to reducing plastic waste and advancing towards a circular polymer economy. Here, we introduce a new class of polythioenones (PCTE) synthesized via Michael addition-elimination ring-opening polymerization (MAEROP) of cyclic thioenone (CTE) monomers. The designed monomers are straightforward to synthesize, scalable and highly modular, and the resulting polymers display mechanical performance superior to commodity polyolefins such as polyethylene and polypropylene.

View Article and Find Full Text PDF

AA-Stacked Hydrogen-Substituted Graphdiyne for Enhanced Lithium Storage.

Angew Chem Int Ed Engl

January 2025

Leibniz University Hanover: Leibniz Universitat Hannover, Institute for Solid State Physics, GERMANY.

Graphdiyne (GDY) has been considered a promising electrode material for application in electrochemical energy storage. However, studies on GDY featuring an ordered interlayer stacking are lacking, which is supposed to be another effective way to increase lithium binding sites and diffusion pathways. Herein, we synthesized a hydrogen-substituted GDY (HsGDY) with a highly-ordered AA-stacking structure via a facile alcohol-thermal method.

View Article and Find Full Text PDF

Enriching the structural diversity of metal-organic frameworks (MOFs) is of great importance in developing functional porous materials with specific properties. New MOF structures can be accessed through the rational design of organic linkers with diverse geometric conformations, and their structural complexity can be enhanced by choosing linkers with reduced symmetry. Herein, a series of Zr-based MOFs with unprecedented topologies were developed through a linker desymmetrization and conformation engineering approach.

View Article and Find Full Text PDF

We introduce donor-acceptor substituted anthracenes as effective molecular solar thermal energy storage compounds that operate exclusively in the solid state. The donor-acceptor anthracenes undergo visible light-induced [4+4] cycloaddition reaction, producing metastable cycloadducts, dianthracenes with quaternary carbons, and storing photon energy. The triggered cycloreversion of dianthracenes to anthracenes discharges the stored energy as heat in the order of 100 kJ/mol (200 J/g).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!