Investigation of WO Electrodeposition Leading to Nanostructured Thin Films.

Nanomaterials (Basel)

Dipartimento di Fisica e Astronomia "Ettore Majorana", Università di Catania, and CNR-IMM, via S. Sofia 64, 95123 Catania, Italy.

Published: July 2020

Nanostructured WO represents a promising material for electrochromic and sensing devices. In this scenario, electrodeposition is a promising low-cost approach for careful production. The electrodeposition of tungsten oxide film from a peroxo-tungstic-acid (PTA) solution is investigated. WO is synthetized onto Indium doped Tin Oxide (ITO) substrates, in a variety of shapes, from a fragmentary, thin layer up to a thick continuous film. Samples were investigated by scanning electron (SEM) and atomic force microscopy (AFM), Rutherford backscattering spectrometry (RBS), X-ray Diffraction analysis (XRD), energy gap measurement. Electrodeposition current curves are compared with characterization results to model the growth process. Early stages of electrodeposition are characterized by a transient cathodic current revealing an instantaneous nucleation followed by a diffusion limited process. A quantitative analysis of W deposition rate and current at working electrode validates a microscopic model for WO electrodeposition driving the process towards nanostructured versus continuous WO film.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7466470PMC
http://dx.doi.org/10.3390/nano10081493DOI Listing

Publication Analysis

Top Keywords

continuous film
8
electrodeposition
5
investigation electrodeposition
4
electrodeposition leading
4
leading nanostructured
4
nanostructured thin
4
thin films
4
films nanostructured
4
nanostructured represents
4
represents promising
4

Similar Publications

The trace detection of pyocyanin (PCN) is crucial for infection control, and electrochemical sensing technology holds strong potential for application in this field. A pivotal challenge in utilizing carbon materials within electrochemical sensors lies in constructing carbon-based films with robust adhesion. To address this issue, a novel composite hydrogel consisting of multi-walled carbon nanotubes/polyvinyl alcohol/phosphotungstic acid (MWCNTs/PVA/PTA) was proposed in this study, resulting in the preparation of a highly sensitive and stable PCN electrochemical sensor.

View Article and Find Full Text PDF

Silk fibroin, known for its biocompatibility and biodegradability, holds significant promise for biomedical applications, particularly in drug delivery systems. The precise fabrication of silk fibroin particles, specifically those ranging from tens of nanometres to hundreds of microns, is critical for these uses. This study introduces elliptical vibration micro-turning as a method for producing silk fibroin particles in the form of cutting chips to serve as carriers for drug delivery systems.

View Article and Find Full Text PDF

Cd(Se,Te) photovoltaics (PV) are the most widely deployed thin-film solar technology globally, yet continued efficiency improvements are stymied by challenges at the device hole contacts. The inclusion of solution-processed oxide layers such as AlGaO in the contact stack has yielded improved device open-circuit voltages () and fill factors (FF). However, contradictory mechanisms by which these layers improve the device properties have been proposed by the research community.

View Article and Find Full Text PDF

A Review of Sulfate Removal from Water Using Polymeric Membranes.

Membranes (Basel)

January 2025

Industrial Systems Engineering, Produced Water Treatment Laboratory, Faculty of Engineering and Applied Science, University of Regina, Regina, SK S4S 0A2, Canada.

Access to clean and reliable water has become a critical concern due to the global water crisis. High sulfate levels in drinking water raise health concerns for humans and animals and can cause serious corrosion in industrial systems. Sulfated waters represent a major challenge on the Canadian prairies, leading to many cattle deaths.

View Article and Find Full Text PDF

Bipolar Solid-Solution Hosts for Efficient Crystalline Organic Light-Emitting Diodes.

ACS Appl Mater Interfaces

January 2025

State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China.

Crystalline organic semiconductors, recognized for their highly ordered structures and high carrier mobility, have emerged as a focal point in the field of high-performance optoelectronic devices. Nevertheless, the intrinsic unipolar properties, characterized by imbalanced hole and electron transport capabilities, have continuously represented a significant challenge in the advancement of high-performance crystalline thin-film organic light-emitting diodes (C-OLEDs). Here, a bipolar solid-solution thin film with a maintained crystal structure has been fabricated using 2-(4-(9H-carbazol-9-yl)phenyl)-1(3,5-difluorophenyl)-1H-phenanthro [9,10-d]imidazole (2FPPICz) and 4-(1-(3,5-difluorophenyl)-1H-imidazo[4,5-][1,10]phenanthrolin-2-yl)-N,N-diphenylaniline (2Fn) via a weak epitaxial growth (WEG) process, exhibiting nearly equivalent hole and electron mobilities (10-10 cm V s).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!