Enveloped viruses include the most dangerous human and animal pathogens, in particular coronavirus, influenza virus, and human immunodeficiency virus (HIV). For these viruses, receptor binding and entry are accomplished by a single viral envelope protein (termed the fusion protein), the structural changes of which trigger the remodeling and merger of the viral and target cellular membranes. The number of fusion proteins required for fusion activity is still under debate, and several studies report this value to range from 1 to 9 for type I fusion proteins. Here, we consider the earliest stage of viral fusion based on the continuum theory of membrane elasticity. We demonstrate that membrane deformations induced by the oblique insertion of amphipathic fusion peptides mediate the lateral interaction of these peptides and drive them to form into a symmetric fusion rosette. The pulling force produced by the structural rearrangements of the fusion protein ectodomains gives additional torque, which deforms the membrane and additionally stabilizes the symmetric fusion rosette, thus allowing a reduction in the number of fusion peptides needed for fusion. These findings can resolve the large range of published cooperativity indices for HIV, influenza, and other type I fusion proteins.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7432320PMC
http://dx.doi.org/10.3390/ijms21155411DOI Listing

Publication Analysis

Top Keywords

fusion
14
fusion proteins
12
influenza virus
8
virus hiv
8
fusion protein
8
number fusion
8
type fusion
8
fusion peptides
8
symmetric fusion
8
fusion rosette
8

Similar Publications

Study Design: Single-center retrospective cohort study.

Objective: To compare the correction of fractional curve and L5 tilt in 2RVBT versus PSF with LIV in the lumbar spine.

Summary Of Background Data: Vertebral body tethering, an AIS fusion-alternative, avoids rigid constructs, allowing for lower instrumented vertebra (LIV) selection.

View Article and Find Full Text PDF

Epithelial cell adhesion molecule (EpCAM) fused to IgG, IgA and IgM Fc domains was expressed to create IgG, IgA and IgM-like structures as anti-cancer vaccines in Nicotiana tabacum. High-mannose glycan structures were generated by adding a C-terminal endoplasmic reticulum (ER) retention motif (KDEL) to the Fc domain (FcK) to produce EpCAM-Fc and EpCAM-FcK proteins in transgenic plants via Agrobacterium-mediated transformation. Cross-fertilization of EpCAM-Fc (FcK) transgenic plants with Joining chain (J-chain, J and JK) transgenic plants led to stable expression of large quaternary EpCAM-IgA Fc (EpCAM-A) and IgM-like (EpCAM-M) proteins.

View Article and Find Full Text PDF

Broadly neutralizing antibodies (bnAbs) against HIV-1 have been shown to protect from systemic infection. When employing a novel challenge virus that uses HIV-1 Env for entry into target cells during the first replication cycle, but then switches to SIV Env usage, we demonstrated that bnAbs also prevented mucosal infection of the first cells. However, it remained unclear whether antibody Fc-effector functions contribute to this sterilizing immunity.

View Article and Find Full Text PDF

Importance: Molecular techniques, including next-generation sequencing, genomic copy number profiling, fusion transcript detection, and genomic DNA methylation arrays, are now indispensable tools for the workup of central nervous system (CNS) tumors. Yet there remains a great deal of heterogeneity in using such biomarker testing across institutions and hospital systems. This is in large part because there is a persistent reluctance among third-party payers to cover molecular testing.

View Article and Find Full Text PDF

Developing intranasal vaccines against pandemics and devastating airborne infectious diseases is imperative. The superiority of intranasal vaccines over injectable systemic vaccines is evident, but developing effective intranasal vaccines presents significant challenges. Fusing a protein antigen with the catalytic domain of cholera toxin (CTA1) and the two-domain D of staphylococcal protein A (DD) has significant potential for intranasal vaccines.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!