Several alkylating agents that either occur in the environment or are self-produced can cause DNA-damaging injuries in bacterial cells. Therefore, all microorganisms have developed repair systems that are able to counteract DNA alkylation damage. The adaptive response to alkylation stress in consists of the Ada operon, which has been widely described; however, the homologous system in (MTB) has been shown to have a different genetic organization but it is still largely unknown. In order to describe the defense system of MTB, we first investigated the proteins involved in the repair mechanism in the homologous non-pathogenic mycobacterium . Ogt, Ada-AlkA and FadE8 proteins were recombinantly produced, purified and characterized. The biological role of Ogt was examined using proteomic experiments to identify its protein partners in vivo under stress conditions. Our results suggested the formation of a functional complex between Ogt and Ada-AlkA, which was confirmed both in silico by docking calculations and by gel filtration chromatography. We propose that this stable association allows the complex to fulfill the biological roles exerted by Ada in the homologous system. Finally, FadE8 was demonstrated to be structurally and functionally related to its homologous, AidB.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7432924PMC
http://dx.doi.org/10.3390/ijms21155391DOI Listing

Publication Analysis

Top Keywords

proteins involved
8
repair mechanism
8
homologous system
8
system mtb
8
ogt ada-alka
8
characterization proteins
4
involved dna
4
dna repair
4
mechanism alkylating
4
alkylating agents
4

Similar Publications

tiRNA-Gln-CTG is Involved in the Regulation of Trophoblast Cell Function in Pre-eclampsia and Serves as a Potent Biomarker.

Front Biosci (Landmark Ed)

January 2025

Department of Obstetrics and Gynecology, Zhongda Hospital, School of Medicine, Southeast University, 210000 Nanjing, Jiangsu, China.

Background: Pre-eclampsia (PE) is a gestational disorder that significantly endangers maternal and fetal health. Transfer ribonucleic acid (tRNA)-derived small RNAs (tsRNAs) are important in the progression and diagnosis of various diseases. However, their role in the development of PE is unclear.

View Article and Find Full Text PDF

Background: Androgenic anabolic steroids (AASs) are synthetic drugs structurally related to testosterone, with the ability to bind to androgen receptors. Their uncontrolled use by professional and recreational sportspeople is a widespread problem. AAS abuse is correlated with severe damage to the cardiovascular system, including changes in homeostasis and coagulation disorders.

View Article and Find Full Text PDF

Vitamin Bs as Potent Anticancer Agents through MMP-2/9 Regulation.

Front Biosci (Landmark Ed)

January 2025

Department of Chemistry Education, Kongju National University, 32588 Gongju, Chungcheongnam-do, Republic of Korea.

In recent years, the role of coenzymes, particularly those from the vitamin B group in modulating the activity of metalloenzymes has garnered significant attention in cancer treatment strategies. Metalloenzymes play pivotal roles in various cellular processes, including DNA repair, cell signaling, and metabolism, making them promising targets for cancer therapy. This review explores the complex interplay between coenzymes, specifically vitamin Bs, and metalloenzymes in cancer pathogenesis and treatment.

View Article and Find Full Text PDF

Acute lung injury (ALI) is a severe respiratory disease with high mortality, mainly due to overactivated oxidative stress and subsequent pyroptosis. Mesencephalic astrocyte-derived neurotrophic factor (MANF), an inducible secretory endoplasmic reticulum (ER) stress protein, inhibits lipopolysaccharide (LPS)-induced acute lung injury (ALI). However, the exact molecular mechanism remains unclear.

View Article and Find Full Text PDF

Lassa fever (LF), a viral hemorrhagic fever disease with a case fatality rate that can be over 20% among hospitalized LF patients, is endemic to many West African countries. Currently, no vaccines or therapies are specifically licensed to prevent or treat LF, hence the significance of developing therapeutics against the mammarenavirus Lassa virus (LASV), the causative agent of LF. We used in silico docking approaches to investigate the binding affinities of 2015 existing drugs to LASV proteins known to play critical roles in the formation and activity of the virus ribonucleoprotein complex (vRNP) responsible for directing replication and transcription of the viral genome.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!