Vascular structures in the retina contain important information for the detection and analysis of ocular diseases, including age-related macular degeneration, diabetic retinopathy and glaucoma. Commonly used modalities in diagnosis of these diseases are fundus photography, scanning laser ophthalmoscope (SLO) and fluorescein angiography (FA). Typically, retinal vessel segmentation is carried out either manually or interactively, which makes it time consuming and prone to human errors. In this research, we propose a new multi-modal framework for vessel segmentation called ELEMENT (vEsseL sEgmentation using Machine lEarning and coNnecTivity). This framework consists of feature extraction and pixel-based classification using region growing and machine learning. The proposed features capture complementary evidence based on grey level and vessel connectivity properties. The latter information is seamlessly propagated through the pixels at the classification phase. ELEMENT reduces inconsistencies and speeds up the segmentation throughput. We analyze and compare the performance of the proposed approach against state-of-the-art vessel segmentation algorithms in three major groups of experiments, for each of the ocular modalities. Our method produced higher overall performance, with an overall accuracy of 97.40%, compared to 25 of the 26 state-of-the-art approaches, including six works based on deep learning, evaluated on the widely known DRIVE fundus image dataset. In the case of the STARE, CHASE-DB, VAMPIRE FA, IOSTAR SLO and RC-SLO datasets, the proposed framework outperformed all of the state-of-the-art methods with accuracies of 98.27%, 97.78%, 98.34%, 98.04% and 98.35%, respectively.

Download full-text PDF

Source
http://dx.doi.org/10.1109/JBHI.2020.2999257DOI Listing

Publication Analysis

Top Keywords

vessel segmentation
20
machine learning
12
retinal vessel
8
region growing
8
growing machine
8
vessel
6
segmentation
6
element multi-modal
4
multi-modal retinal
4
segmentation based
4

Similar Publications

The brain is composed of a dense and ramified vascular network of arteries, veins and capillaries of various sizes. One way to assess the risk of cerebrovascular pathologies is to use computational models to predict the physiological effects of reduced blood supply and correlate these responses with observations of brain damage. Therefore, it is crucial to establish a detailed 3D organization of the brain vasculature, which could be used to develop more accurate in silico models.

View Article and Find Full Text PDF

Cerebral microbleeds (CMBs) are small, hypointense hemosiderin deposits in the brain measuring 2-10 mm in diameter. As one of the important biomarkers of small vessel disease, they have been associated with various neurodegenerative and cerebrovascular diseases. Hence, automated detection, and subsequent extraction of clinically useful metrics (e.

View Article and Find Full Text PDF

Long-segment Hirschsprung disease (HSCR) presents significant challenges in surgical management, often requiring extensive bowel mobilization and creative techniques to achieve tension-free anastomosis. Colonic derotation offers a viable solution for preserving bowel length and maintaining the ileocecal valve, which is crucial for postoperative bowel function. The procedure involves extensive colonic mobilization and strategic vascular divisions of the right and middle colic vessels while preserving the ileocolic and marginal arteries, followed by a 180° counterclockwise rotation of the colon around the ileocolic vascular axis.

View Article and Find Full Text PDF

The presentation of pulmonary vasculature in pulmonary atresia with ventricular septal defect and major aortopulmonary collateral arteries (PA/VSD/MAPCA) is highly variable-as is the number, size and position of the MAPCAs and their relationship with the native pulmonary artery system. The priority in the management of this disease should be attaining timely and complete unifocalization, as opposed to single-stage full repair in every case. The merit of early unifocalization is that it secures the pulmonary vascular bed by (a) avoiding loss of lung segments from progressive stenosis/atresia of MAPCA origins, (b) preventing lung injury from high pressure/flow in areas fed by large, unobstructed MAPCAs, and (c) restoring central continuity of the pulmonary vasculature.

View Article and Find Full Text PDF

White matter hyperintensities regress at a high rate at three months after minor ischemic stroke or transient ischemic attack.

J Neuroradiol

January 2025

Soochow Medical college of Soochow University, Suzhou, PR China; Center for Rehabilitation Medicine, Department of Radiology, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou, Zhejiang, PR China. Electronic address:

Background: The potential for early white matter hyperintensities(WMH) regression and associated contributory factors remains uncertain. The purpose of this study is to investigate whether WMH regress at early time of three months after minor ischemic stroke (MIS) or transient ischemic attack (TIA), while also identifying factors that may influence this outcome.

Methods: A retrospective analysis of a prospective subcohort from the CHANCE trial comprising individuals with MIS and TIA was conducted.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!