A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Smartphone- and Smartwatch-Based Remote Characterisation of Ambulation in Multiple Sclerosis During the Two-Minute Walk Test. | LitMetric

Leveraging consumer technology such as smartphone and smartwatch devices to objectively assess people with multiple sclerosis (PwMS) remotely could capture unique aspects of disease progression. This study explores the feasibility of assessing PwMS and Healthy Control's (HC) physical function by characterising gait-related features, which can be modelled using machine learning (ML) techniques to correctly distinguish subgroups of PwMS from healthy controls. A total of 97 subjects (24 HC subjects, 52 mildly disabled (PwMSmild, EDSS [0-3]) and 21 moderately disabled (PwMSmod, EDSS [3.5-5.5]) contributed data which was recorded from a Two-Minute Walk Test (2MWT) performed out-of-clinic and daily over a 24-week period. Signal-based features relating to movement were extracted from sensors in smartphone and smartwatch devices. A large number of features (n = 156) showed fair-to-strong (R 0.3) correlations with clinical outcomes. LASSO feature selection was applied to select and rank subsets of features used for dichotomous classification between subject groups, which were compared using Logistic Regression (LR), Support Vector Machines (SVM) and Random Forest (RF) models. Classifications of subject types were compared using data obtained from smartphone, smartwatch and the fusion of features from both devices. Models built on smartphone features alone achieved the highest classification performance, indicating that accurate and remote measurement of the ambulatory characteristics of HC and PwMS can be achieved with only one device. It was observed however that smartphone-based performance was affected by inconsistent placement location (running belt versus pocket). Results show that PwMSmod could be distinguished from HC subjects (Acc. 82.2 ± 2.9%, Sen. 80.1 ± 3.9%, Spec. 87.2 ± 4.2%, F 84.3 ± 3.8), and PwMSmild (Acc. 82.3 ± 1.9%, Sen. 71.6 ± 4.2%, Spec. 87.0 ± 3.2%, F 1 75.1 ± 2.2) using an SVM classifier with a Radial Basis Function (RBF). PwMSmild were shown to exhibit HC-like behaviour and were thus less distinguishable from HC (Acc. 66.4 ± 4.5%, Sen. 67.5 ± 5.7%, Spec. 60.3 ± 6.7%, F 58.6 ± 5.8). Finally, it was observed that subjects in this study demonstrated low intra- and high inter-subject variability which was representative of subject-specific gait characteristics.

Download full-text PDF

Source
http://dx.doi.org/10.1109/JBHI.2020.2998187DOI Listing

Publication Analysis

Top Keywords

smartphone smartwatch
12
multiple sclerosis
8
two-minute walk
8
walk test
8
smartwatch devices
8
pwms healthy
8
features
6
smartphone- smartwatch-based
4
smartwatch-based remote
4
remote characterisation
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!