Accurate lesion segmentation based on endoscopy images is a fundamental task for the automated diagnosis of gastrointestinal tract (GI Tract) diseases. Previous studies usually use hand-crafted features for representing endoscopy images, while feature definition and lesion segmentation are treated as two standalone tasks. Due to the possible heterogeneity between features and segmentation models, these methods often result in sub-optimal performance. Several fully convolutional networks have been recently developed to jointly perform feature learning and model training for GI Tract disease diagnosis. However, they generally ignore local spatial details of endoscopy images, as down-sampling operations (e.g., pooling and convolutional striding) may result in irreversible loss of image spatial information. To this end, we propose a multi-scale context-guided deep network (MCNet) for end-to-end lesion segmentation of endoscopy images in GI Tract, where both global and local contexts are captured as guidance for model training. Specifically, one global subnetwork is designed to extract the global structure and high-level semantic context of each input image. Then we further design two cascaded local subnetworks based on output feature maps of the global subnetwork, aiming to capture both local appearance information and relatively high-level semantic information in a multi-scale manner. Those feature maps learned by three subnetworks are further fused for the subsequent task of lesion segmentation. We have evaluated the proposed MCNet on 1,310 endoscopy images from the public EndoVis-Ab and CVC-ClinicDB datasets for abnormal segmentation and polyp segmentation, respectively. Experimental results demonstrate that MCNet achieves [Formula: see text] and [Formula: see text] mean intersection over union (mIoU) on two datasets, respectively, outperforming several state-of-the-art approaches in automated lesion segmentation with endoscopy images of GI Tract.

Download full-text PDF

Source
http://dx.doi.org/10.1109/JBHI.2020.2997760DOI Listing

Publication Analysis

Top Keywords

endoscopy images
28
lesion segmentation
24
segmentation endoscopy
12
segmentation
9
multi-scale context-guided
8
context-guided deep
8
deep network
8
automated lesion
8
gastrointestinal tract
8
model training
8

Similar Publications

Background: Delta large-channel endoscopy and unilateral biportal endoscopy (UBE) are prominent minimally invasive techniques for treating lumbar spinal stenosis, known for minimal tissue damage, clear visualization, and quick recovery. However, rigorous controlled research comparing these procedures is scarce, necessitating further investigation into their respective complications and long-term effectiveness. This randomized controlled trial aims to compare their perioperative outcomes, focusing on postoperative recovery and complications over time.

View Article and Find Full Text PDF

Transcranial neurosurgery assisted by endoscopy and intraoperative ultrasound (IOUS) has become an effective approach for real-time visualization and guidance during tumor resection. This study explores the application of these techniques in falcine meningioma (FM) resection, assessing their feasibility and safety. Eleven FM patients underwent transcranial endoscopic resection with IOUS assistance.

View Article and Find Full Text PDF

Gastrointestinal tract-related cancers pose a significant health burden, with high mortality rates. In order to detect the anomalies of the gastrointestinal tract that may progress to cancer, a video capsule endoscopy procedure is employed. The number of video capsule endoscopic ( ) images produced per examination is enormous, which necessitates hours of analysis by clinicians.

View Article and Find Full Text PDF

Development and Validation of an AI-Based Multimodal Model for Pathological Staging of Gastric Cancer Using CT and Endoscopic Images.

Acad Radiol

January 2025

Guangxi Medical University, Nanning, Guangxi 530021, China (C.Z., D.H., B.W., S.W., Y.S., X.W.); Guangxi Key Laboratory of Enhanced Recovery After Surgery for Gastrointestinal Cancer, Nanning, Guangxi 530021, China (C.Z., D.H., B.W., S.W., Y.S., X.W.); Department of Gastrointestinal Gland Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, China (D.H., X.W.). Electronic address:

Rationale And Objectives: Accurate preoperative pathological staging of gastric cancer is crucial for optimal treatment selection and improved patient outcomes. Traditional imaging methods such as CT and endoscopy have limitations in staging accuracy.

Methods: This retrospective study included 691 gastric cancer patients treated from March 2017 to March 2024.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!