Contextual information is vital in visual understanding problems, such as semantic segmentation and object detection. We propose a criss-cross network (CCNet) for obtaining full-image contextual information in a very effective and efficient way. Concretely, for each pixel, a novel criss-cross attention module harvests the contextual information of all the pixels on its criss-cross path. By taking a further recurrent operation, each pixel can finally capture the full-image dependencies. Besides, a category consistent loss is proposed to enforce the criss-cross attention module to produce more discriminative features. Overall, CCNet is with the following merits: 1) GPU memory friendly. Compared with the non-local block, the proposed recurrent criss-cross attention module requires 11× less GPU memory usage. 2) High computational efficiency. The recurrent criss-cross attention significantly reduces FLOPs by about 85 percent of the non-local block. 3) The state-of-the-art performance. We conduct extensive experiments on semantic segmentation benchmarks including Cityscapes, ADE20K, human parsing benchmark LIP, instance segmentation benchmark COCO, video segmentation benchmark CamVid. In particular, our CCNet achieves the mIoU scores of 81.9, 45.76 and 55.47 percent on the Cityscapes test set, the ADE20K validation set and the LIP validation set respectively, which are the new state-of-the-art results. The source codes are available at https://github.com/speedinghzl/CCNethttps://github.com/speedinghzl/CCNet.

Download full-text PDF

Source
http://dx.doi.org/10.1109/TPAMI.2020.3007032DOI Listing

Publication Analysis

Top Keywords

criss-cross attention
20
semantic segmentation
12
attention module
12
gpu memory
8
non-local block
8
recurrent criss-cross
8
segmentation benchmark
8
validation set
8
criss-cross
6
attention
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!