A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Beta 1 adrenoceptor blockade promotes angiogenesis in hypertrophied myocardium of transverse aortic constricted mice. | LitMetric

AI Article Synopsis

  • Left ventricular hypertrophy (LVH) results from high blood pressure and can lead to heart failure, with impaired blood vessel growth being a critical factor.
  • Beta adrenoceptor blockers (β-AR) like metoprolol slow the progression of LVH and were studied for their effects on heart blood vessel remodeling in a mouse model of LVH.
  • The study showed that β-AR blockers reduced oxidative stress and heart enlargement while improving heart function and blood vessel growth, suggesting they protect against harmful changes in heart blood vessels.

Article Abstract

Left ventricular hypertrophy (LVH) is an adaptive structural remodelling consequent to uncontrolled blood pressure. Impaired angiogenesis plays a vital role in transiting LVH into cardiac failure. Catecholamines modulate myocardial function through beta adrenoceptors, and their blockers (β-AR) reduce cardiovascular morbidity and mortality by decelerating the LVH progression. Nonetheless, the effect of β-AR blockers on myocardial vascular bed remains largely obscure. Hence, this study is focussed on analysing the possible outcomes of β-AR blockers on myocardial vascular remodelling using a surgically induced LVH mice model. Transverse aortic constricted mice and sham-operated mice were administered with metoprolol at a dose of 30 mg/kg/d for 60 days and myocardial vascular endothelial growth factor (VEGF) alpha levels, GSH/GSSG ratio, myocardial protein carbonyl content, hypertrophy index and global myocardial function, trans-aortic fluid dynamics and expression pattern of angiopoietin-1 and VEGF alpha were assessed. These findings were further confirmed by histochemical analysis for myocardial capillary density, perivascular fibrosis ratio and intimal thickening. Sub- chronic β-AR blockade reduced the oxidative stress, hypertrophic index, intimal thickening and perivascular fibrosis ratio. A marked increase in myocardial VEGF, angiopoietin 1, global myocardial function and myocardial capillary density was also observed. There was a reduction in the LVH and upregulation of myocardial angiogenesis concluding that β-AR blockers prevent adverse vascular remodelling which might underlie its concealed mechanism of action.

Download full-text PDF

Source
http://dx.doi.org/10.1111/1440-1681.13389DOI Listing

Publication Analysis

Top Keywords

myocardial function
12
β-ar blockers
12
myocardial vascular
12
myocardial
11
transverse aortic
8
aortic constricted
8
constricted mice
8
blockers myocardial
8
vascular remodelling
8
vegf alpha
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!