Drosophila is among the most commonly used models for toxicity assessment of different types of nanoparticles. This study aims to examine the effects of a constant exposure to the low concentration of human food grade titanium dioxide nanoparticles (TiO E171) on Drosophila melanogaster wing morphology over multiple generations. Subsequently, the Geometric Morphometrics Analysis was employed to examine possible changes in the wing shape and size of the treated flies. The treatment resulted in the diminishment but not a disruption in the sexual dimorphism in wings. Consequently, the female flies were clearly separated from the male flies by the differences in wing morphology as in the control group. A splitting by generations was overly similar within the control and the treatment, but it was slightly more pronounced in the treatment. However, the observed generational differences seemed mostly random between generations, irrespective of the treatment. Specifically, the treated groups displayed slightly higher splitting by generations in females than in males. Regardless of the generation, the results show a clear splitting by the differences in the wing shape between the treated flies and the flies from control. The mean value of centroid size, which refers to the wing size, of both female and male wings was smaller in the treatment when compared to the control. The overall effect of TiO was to induce significant difference in Drosophila wing morphology but it did not alter the general wing morphology pattern. Therefore, the change in the wings occurred only within the normally allowed wing variation.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.chemosphere.2020.127787DOI Listing

Publication Analysis

Top Keywords

wing morphology
16
wing shape
12
changes wing
8
shape size
8
drosophila melanogaster
8
food grade
8
grade titanium
8
titanium dioxide
8
dioxide nanoparticles
8
wing
8

Similar Publications

Divergence in the Morphology and Energy Metabolism of Adult Polyphenism in the Cowpea Beetle .

Insects

December 2024

Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China.

Adult polyphenism is a prevalent form of adaptive evolution that enables insects to generate discrete phenotypes based on environmental factors. However, the morphology and molecular mechanisms underlying adult dimorphism in (a global storage pest) remain elusive. Understanding these mechanisms is crucial for predicting the dispersal and population dynamics of .

View Article and Find Full Text PDF

Insects enhance aerodynamic flight control using the dynamic movement of their appendages, aiding in balance, stability, and manoeuvrability. Although biologists have observed these behaviours, the phenomena have not been expressed in a unified mathematical flight dynamics framework. For instance, relevant existing models tend to disregard either the aerodynamic or the inertial effects of the appendages of insects, such as the abdomen, based on the assumption that appendage dynamic effects dominate in comparison to aerodynamic effects, or that appendages are stationary.

View Article and Find Full Text PDF

Association of blood group types and clinico-pathological features of gynecological cancers (GCs).

BMC Cancer

January 2025

Molecular Diseases & Diagnostics Division, Infinity Biochemistry, Infinity Solutions Unlimited, Sajjad Abad, Chattabal, Srinagar, 190010, Kashmir, India.

Background: Gynecological cancers (GCs) affect the reproductive system of females, and are of multiple types depending on the affected organ most common of which are cervical, endometrial, ovarian cancers. Among different risk factors for GCs, ABO blood group system is considered as one of the pivotal contributing factors for increased susceptibility of GCs. The aim of our study was to report on the demographics of GC patients and to investigate the relationship between the ABO blood group system and the risk of acquiring GC in our population.

View Article and Find Full Text PDF

Pterosaurs were the first vertebrates to evolve active flight. The lack of many well-preserved pterosaur fossils limits our understanding of the functional anatomy and behavior of these flight pioneers, particularly from their early history (Triassic to Middle Jurassic). Here we describe in detail the osteology of an exceptionally preserved Middle Jurassic pterosaur, the holotype of Dearc sgiathanach from the Isle of Skye, Scotland.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!