Sulfonamide degradation and metabolite characterization in submerged membrane photobioreactors for livestock excreta treatment.

Chemosphere

Division of Civil/Environmental/Mineral Resources & Energy Engineering, Soil Environment Research Center, Jeonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju, 54896, Republic of Korea. Electronic address:

Published: December 2020

Residual veterinary antibiotics have been detected in livestock wastewater treatment plants. Despite the long retention time, antibiotic treatment efficiency has shown clear limitations. In this study, we evaluated submerged membrane photobioreactors (SMPBR) during sulfonamide antibiotic-containing livestock wastewater treatment under mixotrophic and photoautotrophic conditions. The results showed that microalgal sulfur degradation and consumption under mixotrophic conditions accelerated the biomass concentration increase to 2800 mg VSS/L compared to the 1800 mg VSS/L measured under photoautotrophic conditions. Although microalgal metabolites, such as soluble microbial products and extracellular polymeric substances, might cause membrane fouling in the SMPBR, we proved that microalgae could remove sulfonamide and release degradation-associated sulfur, along with nitrogen and phosphorus. Moreover, this study confirms the statistical correlation between metabolites and sulfonamides. In summary, the results of this study provide promising insights into antibiotic-containing livestock wastewater treatment.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.chemosphere.2020.127604DOI Listing

Publication Analysis

Top Keywords

livestock wastewater
12
wastewater treatment
12
submerged membrane
8
membrane photobioreactors
8
antibiotic-containing livestock
8
photoautotrophic conditions
8
conditions microalgal
8
treatment
5
sulfonamide degradation
4
degradation metabolite
4

Similar Publications

[Construction of a 17-estradiol sensor based on a magnetic graphene oxide/aptamer separating material].

Se Pu

January 2025

State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.

17-Estradiol (E2) is a natural steroidal estrogen essential for a variety of physiological functions in organisms. However, external E2, which is renowned for its potent biological effects, is also considered to be an endocrine-disrupting compound (EDC) capable of disturbing the normal operation of the endocrine system, even at nanogram-per-liter (ng/L) concentrations. Studies have revealed that medical and livestock wastewater can be contaminated with E2, which poses potential risks to human health.

View Article and Find Full Text PDF

Two-stage continuous cultivation of microalgae overexpressing cytochrome P450 improves nitrogen and antibiotics removal from livestock and poultry wastewater.

Bioresour Technol

December 2024

CAS Key Laboratory of Quantitative Engineering Biology, Center for Synthetic Biochemistry, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, 518055, China. Electronic address:

Improper treatment of livestock and poultry wastewater (LPWW) rich in ammonium nitrogen (NH-N) and antibiotics leads to eutrophication, and contributes to the risk of creating drug-resistant pathogens. The design-build-test-learn strategy was used to engineer a continuous process using Chlorella vulgaris to remove NH-N and antibiotics. The optimized system removed NH-N at a rate of 306 mg/L/d, degraded 99 % of lincomycin, and reduced the hydraulic retention time to 4 days.

View Article and Find Full Text PDF

The antibiotic resistance genes (ARGs) limit the susceptibility of bacteria to antimicrobials, representing a problem of high importance. Current research on the presence of ARGs in microorganisms focuses mainly on humans, livestock, hospitals, or wastewater. However, the spectrum of ARGs in the dust resistome in workplaces and households has gone relatively unexplored.

View Article and Find Full Text PDF

Livestock and poultry breeding wastewater contains a large number of heavy metals and antibiotics; the volume is huge, and it is difficult to treat, which causes serious pollution of the environment. Some studies have shown that symbiotic systems can effectively improve the efficiency of sewage treatment, but there is still a lack of research on the treatment of livestock and poultry wastewater. This experiment not only provides a more in-depth discussion of previous studies, but also demonstrates the feasibility of symbiotic treatment of livestock and poultry wastewater and explores the survival mode and operation mechanism of algal and bacterial symbiosis.

View Article and Find Full Text PDF

Ten-month comprehensive assessment of steroid hormones in the tributaries of Baiyun District, Guangzhou City, China: Spatiotemporal dynamics, source attribution, and environmental implications.

Sci Total Environ

December 2024

College of Natural Resources and Environment, Joint Institute for Environment & Education, South China Agricultural University, Guangzhou 510642, China; Key Laboratory of Arable Land Conservation (South China), MOA, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China; Guangdong Province Key Laboratory for Land Use and Consolidation, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China. Electronic address:

The occurrence of steroid hormones in small river ecosystems raises environmental alarms due to their limited dilution capacity, heightened susceptibility to diverse pollution sources, and their substantial contribution to the contamination of larger river systems. Here, we investigated the occurrence of 40 steroid hormones over 10 months in 10 first-order tributaries (n = 250) of Guangzhou City, China. The observed concentrations of Σsteroid hormones ranged from 30.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!