Fast pyrolysis of lignin can obtain valuable products such as bio-oil, bio-chemical, syngas, and biochar. In this study, two types of lignin known as brown solid from the byproduct of cellulosic ethanol fermentation and commercial dealkaline lignin from the papermaking process were used for pyrolysis in a 3-L batch reactor at 300-450 °C. The product composition in the liquid and gas phases were analyzed by using gas chromatography-mass spectrometry/Flame-ionization detector/thermal conductivity detector (GC-MS/FID/TCD). Increasing the N flow rate to 150 mL/min was sufficient to increase the production of bio-oil/bio-organics up to 15% for brown solid pyrolysis. In contrast, the biochemical production during dealkaline lignin pyrolysis was not sensitive to the change of the N flow rate. The amount of biochar produced in the pyrolysis (~60%) slightly changed at various pyrolysis temperature and gas flow rate, which could be due to the relatively low pyrolysis temperature that was insufficient to decompose the lignin. The GC-MS analysis also revealed that C7-C8 compounds, which represented the phenolic compounds, were the most abundant in the liquid products. Kinetic models of the pyrolysis were established based on the thermogravimetric analysis.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.envres.2020.109976 | DOI Listing |
Am J Physiol Cell Physiol
December 2024
Department of Breast Surgery, Fujian Medical University Union Hospital, Fuzhou, Fujian, 350000, P.R. China.
Ubiquitin‑specific protease 35 (USP35) was found to be involved in various tumor progression, but its role in breast cancer remains largely unknown. USP35 mRNA and protein expression in breast cancer tissues and cells were evaluated by qPCR and Western bolt (WB), respectively. Subsequently, flow cytometry and EDU labeling were used to evaluate breast cancer cell apoptosis and proliferation.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
December 2024
TU Berlin University: Technische Universitat Berlin, Fachbereich Keramische Werkstoffe, Hardenbergstr. 40, 10623, Berlin, GERMANY.
Carbon dioxide hydrogenation to methanol is a key chemical reaction to store energy in chemical bonds, using carbon dioxide as an energy sink. Indium oxide is amongst the most promising candidates for replacing the copper and zinc oxide catalyst, which is industrially applied for syngas mixtures but less idoneous for educts with carbon dioxide due to instability reasons. The polymorph of indium oxide and the operating conditions remain to be optimized for optimal and stable performance.
View Article and Find Full Text PDFPhys Rev Lett
December 2024
Aix Marseille Univ, CNRS, IUSTI, Marseille, France.
Cohesion can dramatically affect the flow of granular media. In this Letter, thanks to a cohesion-controlled granular material, we propose to investigate experimentally the effect of the cohesion on the discharge from a silo. We use two geometries, a cylindrical silo and a thin rectangular silo, with an adjustable bottom to control the size of the orifice.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
December 2024
South China University of Technology, School of Chemistry and Chemical Engineering, Wushan St., 510640, Guangzhou, CHINA.
The proceeding of electrochemical CO2 reduction reaction (CO2RR) requires the formation of active hydrogen species for CO2 protonation, while traditional catalysts fail to balance the rate of hydrogen supply and CO2 protonation. Herein, we propose a "hydrogen on demand" mechanism, in which the polarity of the adsorbed CO2 is enhanced to allow the capture of hydrogen from water without forming free hydrogen species, realizing the matching rate of hydrogen supply and CO2 protonation. As a proof of concept, we construct Zn-N sites modified by Se atoms, allowing the proceeding of CO2RR under the "hydrogen on demand" mechanism with superior efficiency.
View Article and Find Full Text PDFJ Am Soc Mass Spectrom
December 2024
Department of Chemistry, University of New Hampshire, 23 Academic Way, Durham, New Hampshire 03824, United States.
Fluorescence labeled glycan homologous mixtures were quantified using fluorescence and then used to evaluate ionization performances in electrospray ionization at micro, nano, and femto flow modes. nanoESI produced higher (2+ and 3+) charged ions adducted with sodium and calcium. In comparison, femtoESI was found to favor the generation of [M + H] ions against metal adducts, even with nonvolatile salts up to 1 mM for NaCl and 100 μM for CaCl.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!