Acute administration of metformin prior to cardiac ischemia/reperfusion injury protects brain injury.

Eur J Pharmacol

Neurophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand; Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, 50200, Thailand; Department of Oral Biology and Diagnostic Sciences, Faculty of Dentistry, Chiang Mai University, Chiang Mai, 50200, Thailand. Electronic address:

Published: October 2020

Myocardial ischemia is the malperfusion of cardiac tissue due to a blockage in a coronary artery. Subsequent return of blood flow to the ischemic area of the heart, results in ischemia/reperfusion (I/R) injury in the heart and other organs, including the brain. Besides the cardioprotective effects of metformin on the heart against cardiac I/R injury, metformin also reduced neuronal injury in a stroke model. However, the effects of metformin on the brain following cardiac I/R injury has not yet been investigated. Therefore, we hypothesize that metformin reduces brain damage via decreasing brain mitochondrial dysfunction, microglial hyperactivity, and Alzheimer's proteins in rats after cardiac I/R injury. Rats (n = 50) received either a sham operation (n = 10) or cardiac I/R (n = 40). Cardiac I/R was induced by 30 min of cardiac ischemia, followed by 120 min of reperfusion. Rats in cardiac I/R group were divided into 4 groups (n = 10/group); vehicle, metformin 100 mg/kg, metformin 200 mg/kg, and metformin 400 mg/kg. Metformin was given via femoral vein at 15 min prior to cardiac ischemia. At the end of reperfusion, brains were removed to determine dendritic spine density, brain mitochondrial function, microglial morphology, and amyloid beta formation. Cardiac I/R injury led to brain mitochondrial dysfunction, microglial hyperactivation, amyloid beta formation, Tau hyperphosphorylation, and reduced dendritic spine density with an increase in AMPK activation. All doses of metformin improved brain pathologies in rats with cardiac I/R injury possibly via activating cerebral AMPK. In summary, pre-treatment with metformin offers neuroprotection against the brain damages caused by cardiac I/R injury.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ejphar.2020.173418DOI Listing

Publication Analysis

Top Keywords

cardiac i/r
36
i/r injury
28
cardiac
13
brain mitochondrial
12
rats cardiac
12
metformin
11
injury
10
i/r
10
brain
9
prior cardiac
8

Similar Publications

Recent studies have suggested that sVEGFR3 is involved in cardiac diseases by regulating lymphangiogenesis; however, results are inconsistent. The aim of this study was to investigate the function and mechanism of sVEGFR3 in myocardial ischemia/reperfusion injury (MI/RI). sVEGFR3 effects were evaluated in vivo in mice subjected to MI/RI, and in vitro using HL-1 cells exposed to oxygen-glucose deprivation/reperfusion.

View Article and Find Full Text PDF

Background: Myocardial ischemia-reperfusion (I/R) injury refers to cell damage that occurs as a consequence of the restoration of blood circulation following reperfusion therapy for cardiovascular diseases, and it is a primary cause of myocardial infarction. The search for nove therapeutic targets in the context of I/R injury is currently a highly active area of research. p70 ribosomal S6 kinase (S6K1) plays an important role in I/R induced necrosis, although the specific mechanisms remain unclear.

View Article and Find Full Text PDF

Background: Myocardial ischemia-reperfusion (I/R) injury and coronary microcirculation dysfunction (CMD) are observed in patients with myocardial infarction after vascular recanalization. The antianginal drug trimetazidine has been demonstrated to exert a protective effect in myocardial ischemia-reperfusion injury.

Objectives: This study aimed to investigate the role of trimetazidine in endothelial cell dysfunction caused by myocardial I/R injury and thus improve coronary microcirculation.

View Article and Find Full Text PDF

Background/objectives: The failure of physiological left-right (LR) patterning, a critical embryological process responsible for establishing the asymmetric positioning of internal organs, leads to a spectrum of congenital abnormalities characterized by laterality defects, collectively known as "heterotaxy". biallelic variants have recently been associated with heterotaxy syndrome and congenital heart defects (CHD). However, the genotype-phenotype correlations and the underlying pathogenic mechanisms remain poorly understood.

View Article and Find Full Text PDF

eIF4A1 exacerbates myocardial ischemia-reperfusion injury in mice by promoting nuclear translocation of transgelin/p53.

Acta Pharmacol Sin

January 2025

Department of Pharmacology, National Key Laboratory of Frigid Zone Cardiovascular Diseases, State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education, College of Pharmacy, Harbin Medical University, Harbin, 150086, China.

Eukaryotic translation initiation factor 4A1 (eIF4A1) is an ATP-dependent RNA helicase that participates in a variety of biological and pathological processes such as cell proliferation and apoptosis, and cancer. In this study we investigated the role of eIF4A1 in ischemic heart disease. The myocardial ischemia/reperfusion (I/R) model was established in mice by ligation of the left anterior descending artery for 45 min with the subsequent reperfusion for 24 h; cultured neonatal mouse ventricular cardiomyocytes (NMVCs) treated with HO (200 μM) or H/R (12 h hypoxia and 12 h reoxygenation) were used for in vitro study.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!