Substance use disorder is a complex disease created in part by maladaptive learning and memory mechanisms following repeated drug use. Exposure to drug-associated stimuli engages prefrontal cortex circuits, and dysfunction of the medial prefrontal cortex (mPFC) is thought to underlie drug-seeking behaviors. Growing evidence supports a role for parvalbumin containing fast-spiking interneurons (FSI) in modulating prefrontal cortical microcircuit activity by influencing the balance of excitation and inhibition, which can influence learning and memory processes. Most parvalbumin FSIs within layer V of the prelimbic mPFC are surrounded by specialized extracellular matrix structures called perineuronal nets (PNN). Previous work by our group found that cocaine exposure altered PNN-surrounded FSI function, and pharmacological removal of PNNs reduced cocaine-seeking behavior. However, the role of FSIs and associated constituents (parvalbumin and PNNs) in cocaine-related memories was not previously explored and is still unknown. Here, we found that reactivation of a cocaine conditioned place preference memory produced changes in cortical PNN-surrounded parvalbumin FSIs, including decreased parvalbumin intensity, increased parvalbumin cell axis diameter, decreased intrinsic excitability, and increased excitatory synaptic input. Further investigation of intrinsic properties revealed changes in the interspike interval, membrane capacitance, and afterhyperpolarization recovery time. Changes in these specific properties suggest an increase in potassium-mediated currents, which was validated with additional electrophysiological analysis. Collectively, our results indicate that cocaine memory reactivation induces functional adaptations in PNN-surrounded parvalbumin neurons, which likely alters cortical output to promote cocaine-seeking behavior.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9148679PMC
http://dx.doi.org/10.1111/adb.12947DOI Listing

Publication Analysis

Top Keywords

prefrontal cortex
12
cocaine memory
8
memory reactivation
8
reactivation induces
8
induces functional
8
functional adaptations
8
parvalbumin
8
medial prefrontal
8
learning memory
8
parvalbumin fsis
8

Similar Publications

Altered neural recruitment during single and dual tasks in athletes with repeat concussion.

Front Hum Neurosci

December 2024

Department of Health and Exercise Science, Colorado State University, Fort Collins, CO, United States.

Sports-related concussions (SRCs) pose significant challenges to college-aged athletes, eliciting both immediate symptoms and subacute cognitive and motor function impairment. While most symptoms and impairments resolve within weeks, athletes with repeat SRCs may experience heightened risk for prolonged recovery trajectories, future musculoskeletal injuries, and long-term neurocognitive deficits. This study aimed to investigate the impact of repeat SRCs on dual task performance and associated neural recruitment using functional near-infrared spectroscopy (fNIRS).

View Article and Find Full Text PDF

Parkinson's disease (PD) is an age-related neurodegenerative pathology of the central nervous system. The well-known abnormalities characteristic of PD are dysfunctions in the nigrostriatal system including the substantia nigra of the midbrain and the striatum. Moreover, in PD persons, alpha-synucleinopathy is associated with abnormalities in the dopaminergic brain system.

View Article and Find Full Text PDF

Background: Mild traumatic brain injury (mTBI) frequently results in persistent cognitive, emotional, and functional impairments, closely linked to disruptions in the default mode network (DMN). Understanding the mechanisms driving these network abnormalities is critical for advancing diagnostic and therapeutic strategies.

Methods: This study adopted a multimodal approach, combining functional connectivity (FC) analysis, diffusion tensor imaging (DTI), and gene expression profiling to investigate DMN disruptions in mTBI.

View Article and Find Full Text PDF

Estrogens and progesterone can have rapid effects on neuronal function and can modify the use of spatial navigation strategies dependent upon the prefrontal cortex, striatum, and hippocampus. Here, we assessed the effects of 17β-estradiol (E2), progesterone, and its metabolite allopregnanolone, on evoked excitatory postsynaptic potentials in the infralimbic region of the female rat prefrontal cortex. Field excitatory postsynaptic potentials (fEPSPs) evoked by stimulation of layer I were first characterized by recording responses at multiple depths between the cortical surface and the underlying white matter.

View Article and Find Full Text PDF

Diethylnitrosamine (DEN), a common dietary carcinogen, is associated with neurotoxicity in humans and animals. This study investigated the neuroprotective effects of diphenyl diselenide (DPDS) against DEN-induced neurotoxicity in male Albino Wistar rats (n = 40). Rats were randomly distributed into cohorts and treated as follows: vehicle control (corn oil 2 mL/kg; gavage), DPDS-only (5 mg/kg; gavage) and DEN-only (200 mg/kg; single dose i.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!