A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

cuProCell: GPU-Accelerated Analysis of Cell Proliferation With Flow Cytometry Data. | LitMetric

The investigation of cell proliferation can provide useful insights for the comprehension of cancer progression, resistance to chemotherapy and relapse. To this aim, computational methods and experimental measurements based on in vivo label-retaining assays can be coupled to explore the dynamic behavior of tumoral cells. ProCell is a software that exploits flow cytometry data to model and simulate the kinetics of fluorescence loss that is due to stochastic events of cell division. Since the rate of cell division is not known, ProCell embeds a calibration process that might require thousands of stochastic simulations to properly infer the parameterization of cell proliferation models. To mitigate the high computational costs, in this paper we introduce a parallel implementation of ProCell's simulation algorithm, named cuProCell, which leverages Graphics Processing Units (GPUs). Dynamic Parallelism was used to efficiently manage the cell duplication events, in a radically different way with respect to common computing architectures. We present the advantages of cuProCell for the analysis of different models of cell proliferation in Acute Myeloid Leukemia (AML), using data collected from the spleen of human xenografts in mice. We show that, by exploiting GPUs, our method is able to not only automatically infer the models' parameterization, but it is also 237× faster than the sequential implementation. This study highlights the presence of a relevant percentage of quiescent and potentially chemoresistant cells in AML in vivo, and suggests that maintaining a dynamic equilibrium among the different proliferating cell populations might play an important role in disease progression.

Download full-text PDF

Source
http://dx.doi.org/10.1109/JBHI.2020.3005423DOI Listing

Publication Analysis

Top Keywords

cell proliferation
16
cell
8
flow cytometry
8
cytometry data
8
cell division
8
cuprocell gpu-accelerated
4
gpu-accelerated analysis
4
analysis cell
4
proliferation
4
proliferation flow
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!