Near infrared (NIR)-excitable and NIR-emitting probes have fuelled advances in biomedical applications owing to their power in enabling deep tissue imaging, offering high image contrast and reducing phototoxicity. There are essentially three NIR biological windows, i.e., 700-950 nm (NIR I), 1000-1350 nm (NIR II) and 1550-1870 nm (NIR III). Recently emerging optical probes that can be excited by an 800 nm laser and emit in the NIR II or III windows, denoted as NIR I-to-NIR II/III, are particularly attractive. That is because the longer wavelengths in the NIR II and NIR III windows offer deeper penetration and higher signal to noise ratio than those in the NIR I window. NIR imaging has indeed become a quickly evolving field and, simultaneously, stimulated the further development of new classes of NIR I-to-NIR II/III inorganic fluorescent probes, which include PbS, AgS-based quantum dots (QDs) and rare earth (RE) doped NPs (RENPs) that possess quite diverse optical properties and follow different emission mechanisms. This review summarizes the recent progress on material merits, synthetic routes, the rational choice of excitation in the NIR I window, NIR II/III emission optimization, and surface modification of aforementioned fluorescent probes. We also introduce the latest notable accomplishments enabled by these probes in fluorescence imaging, lifetime-based multiplexed imaging and photothermal therapy (PTT), together with a critical discussion of forthcoming challenges and perspectives for clinic use.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/d0tb01430c | DOI Listing |
SLAS Discov
January 2025
Bonds Biosystems, 27 Strathmore Rd, Natick, MA, USA. Electronic address:
Obesity and type 2 diabetes (T2D) are strongly linked to abnormal adipocyte metabolism and adipose tissue (AT) dysfunction. However, existing adipose tissue models have limitations, particularly in the stable culture of fat cells that maintain physiologically relevant phenotypes, hindering a deeper understanding of adipocyte biology and the molecular mechanisms behind differentiation. Current model systems fail to fully replicate in vivo metabolism, posing challenges in adipose research.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
Center for Evidence-Based and Translational Medicine, Zhongnan Hospital of Wuhan University, Wuhan 430070, China. Electronic address:
The healing of bacteria-infected wounds has long posed a significant clinical challenge. Traditional hydrogel wound dressings often lack self-healing properties and effective antibacterial characteristics, making wound healing difficult. In this study, a bioactive small molecule cross-linking agent 4-FPBA/Lys/4-FPBA (FLF) composed of 4-formylphenylboronic acid (4-FPBA) and lysine (Lys) was utilized to cross-link guar gum (GG) and a tannic acid/iron (TA/Fe) chelate through multiple dynamic bonds, leading to the formation of a novel self-healing hydrogel dressing GG-FLF/TA/Fe.
View Article and Find Full Text PDFInorg Chem
January 2025
Institute of Resource Ecology, Helmholtz-Zentrum Dresden-Rossendorf, Dresden 01328, Germany.
Heteroleptic An (An = U, Np) chlorido-ketoenaminate complexes of the type [AnCl(TFB-BuA)(THF)] ( type: , ; TFB-BuA = 4-(-butylamino)-1,1,1-trifluorobut-3-en-2-one) and the homoleptic Np heteroarylalkenolate complexes [Np(PyTFP)] (, PyTFP = 1-(pyridin-2-yl)-3,3,3-trifluoroprop-1-en-2-ol) and [Np(DMOTFP)] (, DMOTFP = 1-(4,5-dimethyloxazol-2-yl)-3,3,3-trifluoroprop-1-en-2-ol) were synthesized and characterized (SC-XRD, NMR, Vis-NIR, MS). While their solid-state structures compare well to those of their uranium analogues, the behavior in solution showed significant differences. The binding motif of the DMOTFP ligand in complex can change to form two different complex isomers, as seen by paramagnetic chemical shifts in NMR experiments.
View Article and Find Full Text PDFJ Phys Chem Lett
January 2025
School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200240, P.R. China.
Gold nanoclusters (Au NCs) protected by molecular ligands represent a new class of second-generation near-infrared (NIR-II) luminescent materials that have been widely studied. However, the photoluminescence efficiencies of most NIR-II emitting Au NCs in aqueous solution are generally lower than 0.2%, and to fully exploit the advantages of AuNCs in the NIR-II region, improving their photoluminescence efficiency has become an urgent need.
View Article and Find Full Text PDFFront Immunol
January 2025
Department of Urology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen, China.
Prostate-Specific Membrane Antigen (PSMA) is a highly expressed and structurally unique target specific to prostate cancer (PCa). Diagnostic and therapeutic approaches in nuclear medicine, coupling PSMA ligands with radionuclides, have shown significant clinical success. PSMA-PET/CT effectively identifies tumors and metastatic lymph nodes for imaging purposes, while -PSMA-617 (Pluvicto) has received FDA approval for treating metastatic castration-resistant PCa (mCRPC).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!