Recent advances of near infrared inorganic fluorescent probes for biomedical applications.

J Mater Chem B

Institut National de la Recherche Scientifique, Centre Énergie, Matériaux et Télécommunications, 1650 Boul. Lionel-Boulet, Varennes, Québec J3X 1S2, Canada.

Published: September 2020

Near infrared (NIR)-excitable and NIR-emitting probes have fuelled advances in biomedical applications owing to their power in enabling deep tissue imaging, offering high image contrast and reducing phototoxicity. There are essentially three NIR biological windows, i.e., 700-950 nm (NIR I), 1000-1350 nm (NIR II) and 1550-1870 nm (NIR III). Recently emerging optical probes that can be excited by an 800 nm laser and emit in the NIR II or III windows, denoted as NIR I-to-NIR II/III, are particularly attractive. That is because the longer wavelengths in the NIR II and NIR III windows offer deeper penetration and higher signal to noise ratio than those in the NIR I window. NIR imaging has indeed become a quickly evolving field and, simultaneously, stimulated the further development of new classes of NIR I-to-NIR II/III inorganic fluorescent probes, which include PbS, AgS-based quantum dots (QDs) and rare earth (RE) doped NPs (RENPs) that possess quite diverse optical properties and follow different emission mechanisms. This review summarizes the recent progress on material merits, synthetic routes, the rational choice of excitation in the NIR I window, NIR II/III emission optimization, and surface modification of aforementioned fluorescent probes. We also introduce the latest notable accomplishments enabled by these probes in fluorescence imaging, lifetime-based multiplexed imaging and photothermal therapy (PTT), together with a critical discussion of forthcoming challenges and perspectives for clinic use.

Download full-text PDF

Source
http://dx.doi.org/10.1039/d0tb01430cDOI Listing

Publication Analysis

Top Keywords

nir
13
fluorescent probes
12
nir iii
12
inorganic fluorescent
8
biomedical applications
8
iii windows
8
nir i-to-nir
8
i-to-nir ii/iii
8
nir window
8
window nir
8

Similar Publications

Obesity and type 2 diabetes (T2D) are strongly linked to abnormal adipocyte metabolism and adipose tissue (AT) dysfunction. However, existing adipose tissue models have limitations, particularly in the stable culture of fat cells that maintain physiologically relevant phenotypes, hindering a deeper understanding of adipocyte biology and the molecular mechanisms behind differentiation. Current model systems fail to fully replicate in vivo metabolism, posing challenges in adipose research.

View Article and Find Full Text PDF

The healing of bacteria-infected wounds has long posed a significant clinical challenge. Traditional hydrogel wound dressings often lack self-healing properties and effective antibacterial characteristics, making wound healing difficult. In this study, a bioactive small molecule cross-linking agent 4-FPBA/Lys/4-FPBA (FLF) composed of 4-formylphenylboronic acid (4-FPBA) and lysine (Lys) was utilized to cross-link guar gum (GG) and a tannic acid/iron (TA/Fe) chelate through multiple dynamic bonds, leading to the formation of a novel self-healing hydrogel dressing GG-FLF/TA/Fe.

View Article and Find Full Text PDF

Heteroleptic An (An = U, Np) chlorido-ketoenaminate complexes of the type [AnCl(TFB-BuA)(THF)] ( type: , ; TFB-BuA = 4-(-butylamino)-1,1,1-trifluorobut-3-en-2-one) and the homoleptic Np heteroarylalkenolate complexes [Np(PyTFP)] (, PyTFP = 1-(pyridin-2-yl)-3,3,3-trifluoroprop-1-en-2-ol) and [Np(DMOTFP)] (, DMOTFP = 1-(4,5-dimethyloxazol-2-yl)-3,3,3-trifluoroprop-1-en-2-ol) were synthesized and characterized (SC-XRD, NMR, Vis-NIR, MS). While their solid-state structures compare well to those of their uranium analogues, the behavior in solution showed significant differences. The binding motif of the DMOTFP ligand in complex can change to form two different complex isomers, as seen by paramagnetic chemical shifts in NMR experiments.

View Article and Find Full Text PDF

Gold nanoclusters (Au NCs) protected by molecular ligands represent a new class of second-generation near-infrared (NIR-II) luminescent materials that have been widely studied. However, the photoluminescence efficiencies of most NIR-II emitting Au NCs in aqueous solution are generally lower than 0.2%, and to fully exploit the advantages of AuNCs in the NIR-II region, improving their photoluminescence efficiency has become an urgent need.

View Article and Find Full Text PDF

Advances in prostate-specific membrane antigen-targeted theranostics: from radionuclides to near-infrared fluorescence technology.

Front Immunol

January 2025

Department of Urology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen, China.

Prostate-Specific Membrane Antigen (PSMA) is a highly expressed and structurally unique target specific to prostate cancer (PCa). Diagnostic and therapeutic approaches in nuclear medicine, coupling PSMA ligands with radionuclides, have shown significant clinical success. PSMA-PET/CT effectively identifies tumors and metastatic lymph nodes for imaging purposes, while -PSMA-617 (Pluvicto) has received FDA approval for treating metastatic castration-resistant PCa (mCRPC).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!