Electrostatic interactions between a quaternary pyridyl-β-diketonate and anionic charged nanosheets were observed to produce a highly emissive dispersion in a rich water solution. A greater fluorescence quantum yield of approximately 50% was obtained when a luminogenic β-diketonate, 1-(4-methoxyphenyl)-3-(3-hydroxyethyl-pyridinium bromide)-1,3-propandione (prepared by the Claisen condensation reaction and subsequent quaternization), was molecularly dispersed and enclosed by a couple of atomically flat ultrathin (approximately 1.0 nm) silicate sheets of anionic layered clay. By accommodating β-diketonate into a narrow interlamellar space (approximately 0.4 nm distance), the molecular motion was suppressed, as confirmed by a smaller non-radiative relaxation rate constant, which was obtained by time-resolved luminescence and quantum yield measurements. Because the dense packing of β-diketonate quenched the excited state, the isolation of luminogens by the co-adsorption of photochemical inert cations (tetramethylammonium and benzylammonium) was prevented by concentration quenching. A lower quantum yield was obtained by expanding the interlayer distance above 1.0 nm by co-adsorbing a photo-inactive water-soluble polymer, poly(vinylpyrrolidone). Therefore, the fixation and spatial separation of β-diketonate in the narrow interlayer space was determined to be essential for obtaining strong emission.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/d0pp00166j | DOI Listing |
Inorg Chem
January 2025
College of Chemistry and Chemical Engineering, Xi'an Shiyou University, Xi'an 710065, China.
Luminescent lanthanide compounds stand out for their distinctive characteristics including narrow emission bands, substantial Stokes shifts, high quantum yields, and unique luminescent colors. However, Ln is highly susceptible to vibrational quenching from X-H (X = O/N) high-energy oscillators in the embedded organic antenna, resulting in significant nonradiative energy dissipation of the D excited states of Ln. Herein, we introduce a strategy based on supramolecular interactions to modulate the nonradiative transitions in a new Zn-Tb heterometallic compound, [ZnTb(HL)(NO)Cl]·2CHCN·HO (), based on a phenyl-substituted pyrazolinone-modified salicylamide-imide ligand ().
View Article and Find Full Text PDFJ Phys Chem Lett
January 2025
Key Laboratory of Physics and Technology for Advanced Batteries, Ministry of Education, College of Physics, Jilin University, Qianjin Street No. 2699, Changchun 130012, China.
Developing heavy-metal-free materials with wide tunable emission is important to light-emitters. The alloying method is utilized in ZnSe magic size clusters (MSCs) with Te to form ZnSeTe and manipulate the band gap structure in ZnSe. The growth of ZnTe on alloyed ZnSeTe quantum dots (QDs) forms ZnSeTe/ZnTe core/shell nanostructures, showing the tunable photoluminescence emission peak from 450 to 760 nm with the different thicknesses of ZnTe shell.
View Article and Find Full Text PDFJ Am Chem Soc
January 2025
Department of Chemistry, Queen's University, Kingston, Ontario K7L 3N6, Canada.
N-heterocyclic carbene (NHC)-protected gold nanoclusters display high stability and high photoluminescence, making them well-suited for fluorescence imaging and photodynamic therapeutic applications. We report herein the synthesis of two bisNHC-protected Au nanoclusters with π-extended aromatic systems. Depending on the position of the π-extended aromatic system, changes to the structure of the ligand shell in the cluster are observed, with the ability to correlate increases in rigidity with increases in fluorescence quantum yield.
View Article and Find Full Text PDFJ Am Chem Soc
January 2025
Department of Chemistry, Queen's University, Chernoff Hall, Kingston, Ontario K7L 3N6, Canada.
The use of gold nanoclusters in biomedical applications has been steadily increasing in recent years. However, water solubility is a key factor for these applications, and water-soluble gold nanoclusters are often difficult to isolate and susceptible to exchange or oxidation in vivo. Herein, we report the isolation of N-heterocyclic carbene (NHC)-protected atomically precise gold nanoclusters functionalized with triethylene glycol monomethyl ether groups.
View Article and Find Full Text PDFACS Appl Bio Mater
January 2025
Department of Chemistry, University of North Dakota, Grand Forks, North Dakota 58202, United States.
Synergistic photodynamic/photothermal therapy (PDT/PTT) can be used to target cancer cells by locally generating singlet oxygen species or increasing temperature under laser irradiation. This approach offers higher tumor ablation efficiency, lower therapeutic dose requirements, and reduced side effects compared to single treatment approaches. However, the therapeutic efficiency of PDT/PTT is still limited by the low oxygen levels within the solid tumors caused by abnormal vasculature and altered cancer cell metabolism.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!