Objective: To assess bone mineral density (BMD) and associated clinical factors in patients with type 1 diabetes (T1D), latent autoimmune diabetes in adults (LADA), and type 2 diabetes (T2D) and in non-diabetic subjects.
Methods: Total 108 age-, sex-, disease duration-, and postmenopausal ratio-matched patients with T1D, LADA, and T2D each and 216 age-, sex-, and postmenopausal ratio-matched non-diabetic controls. Anthropometric, biochemical, and BMD data were collected and analysed.
Results: BMD of total hip and lumbar spine of individuals in the LADA group was lower than those in the T2D and control groups but higher than those in the T1D group. After adjusting for body mass index (BMI), a significant difference in BMD in the lumbar spine was seen between groups. After adjustment for smoking, BMI, 25-(OH) vitamin D, calcium, haemoglobin A1c, and diabetic complication scores, BMD values of patients in LADA group were not significantly different from those of patients in T1D and T2D groups. Multiple stepwise regression analysis showed that BMD was (a) positively associated with weight and C-peptide, and negatively associated with age in patients with diabetes, (b) positively associated with C-peptide in the T1D and LADA groups. The proportion of patients with osteoporosis in the T1D, LADA, T2D, and control groups was 55.6%, 45.4%, 34.3%, and 26.9%, respectively.
Conclusions: BMD values in T1D, LADA, and T2D were in an increasing order of mention. Patients with autoimmune diabetes were more susceptible to osteoporosis. A lower C-peptide level may be responsible for decreased BMD in individuals with autoimmune diabetes.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/dmrr.3390 | DOI Listing |
Alzheimers Dement
December 2024
Imperial College London, London, United Kingdom; Division of Neurology, Department of Brain Sciences, Imperial College London, United Kingdom, London, London, United Kingdom.
Background: Liraglutide is a glucagon-like peptide-1 (GLP-1) analogue licensed for the treatment of type 2 diabetes mellitus (T2DM). Preclinical evidence in transgenic models of Alzheimer's disease suggests that liraglutide exerts neuroprotective effects by reducing amyloid oligomers, normalising synaptic plasticity and cerebral glucose uptake, and increasing the proliferation of neuronal progenitor cells.
Method: This is a multi-centre, randomised, double-blind, placebo-controlled, phase IIb trial of liraglutide in participants with mild to moderate Alzheimer's dementia, conducted at several centres in the UK.
Alzheimers Dement
December 2024
National Institute on Aging, NIH, Baltimore, MD, USA.
Background: Epidemiological studies report an elevated risk of neurodegenerative disorders, particularly Parkinson's disease (PD), in patients with type 2 diabetes mellitus (T2DM) that is mitigated in those prescribed incretin mimetics or dipeptidyl peptidase 4 inhibitors (DPP-4Is). Incretin mimetic repurposing appears promising in human PD and Alzheimer's disease (AD) clinical trials. DPP-4Is are yet to be evaluated in PD or AD human studies.
View Article and Find Full Text PDFAlzheimers Dement
December 2024
Innovation Center for Neurological Disorders, Xuanwu Hospital, Capital Medical University, Beijing, China;, Beijing, China.
Background: Individuals with type 2 diabetes mellitus (T2DM) face an increased risk of dementia. Recent discoveries indicate that SGLT2 inhibitors, a newer class of anti-diabetic medication, exhibit beneficial metabolic effects beyond glucose control, offering a potential avenue for mitigating the risk of Alzheimer's disease (AD). However, limited evidence exists regarding whether the use of SGLT2 inhibitors effectively reduces the risk of AD.
View Article and Find Full Text PDFBackground: Differences in patient characteristics across geographical regions may result in heterogeneity in clinical trial populations. evoke (NCT04777396) and evoke+ (NCT04777409) are two phase 3, multinational, randomised trials investigating semaglutide versus placebo in individuals with mild cognitive impairment or mild dementia due to Alzheimer's disease (AD) (early AD). We present baseline characteristics across the geographical regions in evoke/evoke+.
View Article and Find Full Text PDFAlzheimers Dement
December 2024
UIPS, CHANDIGARH, Punjab, India.
Background: Alzheimer's disease is a brain disorder that causes neurodegeneration and is linked with insulin resistance at molecular, clinical, and demographic levels. Defective insulin signaling promotes Aβ aggregation and accelerates Aβ formation in the brain leading to Type III diabetes.
Objective: The objective of this research project is to demonstrate a linkage if any between the risk of developing Alzheimer's disease and insulin resistance.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!