Introduction: In cochlear implantation, objective fitting methods are needed to optimize audiological results in small children or patients with poor compliance. Intraoperatively measured electrically evoked stapedius reflexes (eSR) can be used as a marker for the patient's discomfort level. The aim of this study was to develop and evaluate an automated detection method for eSR and to compare it to the detection rate of the surgeon and independent observers.
Methods: Cochlear implantation using a fully digital surgical microscope was performed. Movements of the stapedius tendon were recorded and analyzed by means of computer vision technique. Differences in eSR elicited by stimulating electrodes at different cochlear locations (basal, middle and apical) were analyzed. The eSR detection rate of the image processing algorithm was compared to the surgeon's detection rate and to those of two less experienced observers.
Results: A total of 387 electrically impulses were applied. The stimulation of middle turn electrodes showed significantly higher detection rates (50.4%) compared to the basal (40.0%; p = 0.001) and apical (43.6%; p = 0.03) turn. The software identified significantly more of the applied stimuli (58.4%) compared to the surgeon (46.3%; p = 0.0007), the intermediate observer (37.7%; p < 0.0001) and the unexperienced observer (41.3%; p < 0.0001).
Conclusion: The feasibility of an automated intraoperative software-based detection of eSR is demonstrated. By improving the eSR detection methods and their clinical applicability, their utility in objective cochlear implant fitting may be substantially increased.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8131305 | PMC |
http://dx.doi.org/10.1007/s00405-020-06226-x | DOI Listing |
Eur Arch Otorhinolaryngol
January 2025
Department of Otolaryngology, China-Japan Friendship Hospital, Beijing, China.
Objectives: This study examined the relationships between electrophysiological measures of the electrically evoked auditory brainstem response (EABR) with speech perception measured in quiet after cochlear implantation (CI) to identify the ability of EABR to predict postoperative CI outcomes.
Methods: Thirty-four patients with congenital prelingual hearing loss, implanted with the same manufacturer's CI, were recruited. In each participant, the EABR was evoked at apical, middle, and basal electrode locations.
Background: Cochlear implantation is an effective method of auditory rehabilitation. Nevertheless, the results show individual variations depending on several factors.
Aim: To evaluate cochlear implantation results based on the APCEI profile (Acceptance, Perception, Comprehension, Oral Expression and Intelligibility) and audiometric results.
Objective To develop an algorithm, based on the voltage matrix, for detecting regular cochlear implant (CI) electrode position during the implantation procedure, tip fold-over or basal kinking for lateral-wall electrodes. The availability of an algorithm would be valuable in clinical routine, as incorrect positioning of the electrode array can potentially be recognized intraoperatively. Design In this retrospective study intraoperative voltage matrix and postoperative digital volume tomography of 525 CI recipients were analyzed.
View Article and Find Full Text PDFEur Radiol Exp
January 2025
Guilloz Imaging Department, Central Hospital, University Hospital Center of Nancy, 29 Avenue du Marechal de Lattre de Tassigny, 54000, Nancy, France.
Background: We evaluated the accuracy of magnetic resonance imaging (MRI) computed tomography (CT)-like sequences compared to normal-resolution CT (NR-CT) and super-high-resolution CT (SHR-CT) for planning of cochlear implantation.
Methods: Six cadaveric temporal bone specimens were used. 3-T MRI scans were performed using radial volumetric interpolated breath-hold (STARVIBE), pointwise-encoding time reduction with radial acquisition (PETRA), and ultrashort time of echo (UTE) sequences.
Sci Rep
January 2025
Department of ENT/Audiology & School for Mental Health and NeuroScience (MHENS), Maastricht University Medical Centre, Maastricht, The Netherlands.
Traditionally, the place-pitch 'tonotopically' organized auditory neural pathway was considered to be hard-wired. Cochlear implants restore hearing by arbitrarily mapping frequency-amplitude information. This study shows that recipients, after a long period of sound deprivation, preserve a level of auditory plasticity, enabling them to swiftly and concurrently learn speech understanding with two alternating, distinct frequency maps.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!