This research contributes an operational checklist for mitigating cognitive biases in the aerospace sector risk management process. The includes steps for grounding the risk identification and evaluation activities in past project experiences through historical data, and emphasizes the importance of incorporating multiple methods and perspectives to guard against optimism and a singular project instantiation-focused view. The authors developed a survey to elicit subject matter expert judgment on the value of the checklist to support its use in government and industry as a risk management tool. The survey also provided insights on bias mitigation strategies and lessons learned. This checklist addresses the deficiency in the literature in providing operational steps for the practitioner to recognize and implement strategies for bias reduction in risk management in the aerospace sector.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7398041 | PMC |
http://dx.doi.org/10.22594/dau.16-770.25.01 | DOI Listing |
Informing and engaging all actors in the land sector, including land-owners and managers, researchers, policy-makers and citizens, on the most effective sustainable land-based solutions and behavioural changes is a key strategy for achieving climate change adaptation and mitigation targets at the global as well as at EU and local level. One requisite to support actors in the land sector is to provide them publicly available, reliable and ready-to-use information related to the implementation of Land-based Adaptation and Mitigation Solutions (LAMS). Here we introduce a LAMS catalogue, a collection of meaningful quantitative and qualitative information on 60 solutions characterised according to a set of specifications (e.
View Article and Find Full Text PDFPolymers (Basel)
January 2025
Department of Advanced Materials Engineering for Information and Electronics, Kyung Hee University, Yongin 17104, Republic of Korea.
The adhesion between metals and polymers plays a pivotal role in numerous industrial applications, especially within the automotive and aerospace sectors, where there is a growing demand for materials that are both lightweight and durable. This study introduces an innovative technique to improve the adhesion between a metal and a polymer in hybrid structures through the synergistic use of anodization and plasma treatment. By forming a nanoporous oxide layer on aluminum surfaces, anodization enhances the interface for polymer binding.
View Article and Find Full Text PDFMaterials (Basel)
January 2025
Research and Testing Institute Pilsen, 30100 Plzen, Czech Republic.
In this study, we investigated the effect of spray angle on the microstructure, bonding quality, and scratch resistance of cold-sprayed SS316L coatings on SS304 substrates. The coatings were deposited at spray angles of 45°, 60°, 75°, and 90° using a high-pressure cold spray system. A comprehensive analysis of the relationship between the spray angle and coating properties was conducted, with a particular focus on fracture toughness and porosity.
View Article and Find Full Text PDFMaterials (Basel)
January 2025
Department of Plastics Engineering, University of Massachusetts Lowell, Lowell, MA 01854, USA.
Epoxy nanocomposites are widely used in various applications because of their excellent properties. Different types of manufacturing techniques are used to produce epoxy composites based on various fillers, molecular weight, and applications required. The physical properties and chemical structure of epoxy resin help in determining the method for its manufacturing.
View Article and Find Full Text PDFMicromachines (Basel)
December 2024
Henan Key Lab of Intelligent Manufacturing of Mechanical Equipment, Zhengzhou University of Light Industry, Zhengzhou 450002, China.
In recent years, metal nanomaterials and nanoproducts have been developed intensively, and they are now widely applied across various sectors, including energy, aerospace, agriculture, industry, and biomedicine. However, nanomaterials have been identified as potentially toxic, with the toxicity of metal nanoparticles posing significant risks to both human health and the environment. Therefore, the toxicological risk assessment of metal nanomaterials is essential to identify and mitigate potential adverse effects.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!