Accuracy of older adults in judging self-generated elbow torques during multi-joint isometric tasks.

Sci Rep

Department of Physical Therapy and Human Movement Sciences, Northwestern University, Chicago, IL, 60611, USA.

Published: August 2020

Successful execution of daily activities requires accurate perception of the torques one generates about multiple joints. Even so, previous studies are mostly limited to an individual's perception when torques are generated about a single joint. Consequently, this study investigates how accurately individuals judge torques at their arm during a multi-joint task. The accuracy of fifteen right-hand dominant participants (age: 60 ± 10 years) in matching isometric elbow torques, within the same arm, was quantified during single- and/or multi-joint tasks. Participants generated and matched elbow torques when the shoulder was: (1) not abducted (single-to-single-joint), (2) abducted (multi-to-multi-joint), and (3) abducted and then not abducted (multi-to-single-joint). The constant error for the multi-to-single-joint condition (dominant: 6.9 ± 5.9 Nm, non-dominant: 6.0 ± 5.5 Nm) was greater than that for the single-to-single-joint condition (dominant: 2.7 ± 3.1 Nm, non-dominant: 3.4 ± 2.8 Nm) (p < 0.001) and multi-to-multi-joint condition (dominant: 3.0 ± 2.8 Nm, non-dominant: 3.9 ± 2.7 Nm) (p < 0.001). The constant error for the multi-to-multi-joint condition did not significantly differ from that of the single-to-single-joint condition (p [Formula: see text] 0.780). Findings indicate that in older adults the perception of a self-generated torque during a 2-degree-of-freedom (DOF), multi-joint task is largely influenced by the motor commands associated with the 2-DOF task and is not specific to the DOF at each joint.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7400576PMC
http://dx.doi.org/10.1038/s41598-020-69470-5DOI Listing

Publication Analysis

Top Keywords

elbow torques
12
condition dominant
12
dominant non-dominant
12
older adults
8
perception torques
8
torques arm
8
multi-joint task
8
constant error
8
single-to-single-joint condition
8
non-dominant 0001
8

Similar Publications

Background: Epicondylalgia is a common overuse injury in tennis. However, little is known regarding epicondylalgia in pickleball.

Purpose: This study examined the prevalence of positive epicondylalgia tests in recreational pickleball players and the relationship between positive tests and player characteristics.

View Article and Find Full Text PDF

In this study, a fuzzy adaptive impedance control method integrating the backstepping control for the PAM elbow exoskeleton was developed to facilitate robot-assisted rehabilitation tasks. The proposed method uses fuzzy logic to adjust impedance parameters, thereby optimizing user adaptability and reducing interactive torque, which are major limitations of traditional impedance control methods. Furthermore, a repetitive learning algorithm and an adaptive control strategy were incorporated to improve the performance of position accuracy, addressing the time-varying uncertainties and nonlinear disturbances inherent in the exoskeleton.

View Article and Find Full Text PDF

The arm slot (AS) angle reflects the pitching style of baseball pitchers. Baseball pitchers at different levels exhibit different AS angle distributions and different pitching mechanics. The present study divided 66 elite baseball pitchers from the Open Biomechanics database into 3 groups based on AS angles: ASMi, ASMo, ASMa.

View Article and Find Full Text PDF

Background: There is a relative paucity of studies examining how the superior capsule reconstruction (SCR) may alter the kinematics of the glenohumeral joint capsule itself, specifically with respect to rotation and translation in the anterior-posterior and superior-inferior planes. This then raises the possibility that the SCR may be having unintended consequences on glenohumeral kinematics. The purpose of this study was to quantify the glenohumeral joint kinematics following Fascia Lata SCR (FL-SCR).

View Article and Find Full Text PDF

Background: The restriction of active internal rotation (IR) after reverse shoulder arthroplasty (RSA) poses a challenging problem for reconstructive shoulder surgeons, particularly in patients suffering from massive rotator cuff tears (mRCT) with subscapularis (SSC) deficiency. This study aims to evaluate the biomechanical effectiveness of different tendon transfer techniques following medialized glenoid and lateralized humerus RSA in improving internal rotation (IR) strength.

Methods: Eight cadaveric shoulder specimens were evaluated using a custom shoulder testing system designed to simulate loading conditions typical of mRCT with SSC insufficiency.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!